Automatic Differentiation Friendly Complexity Guarantees

Vincent Roulet, Zaid Harchaoui University of Washington

Workshop Beyond First order methods in ML ICML2020

17 Jul. 2019

WASHINGTON

Structure of Deep Neural Networks

Training of a deep neural network of k layers reads

$$\min_{\mathbf{v}_1,...,\mathbf{v}_k} \quad \sum_{i=1}^n f_i(z_k^{(i)}) + \sum_{l=1}^k r_l(\mathbf{v}_l)$$

subject to $z_l^{(i)} = \phi_l(\mathbf{v}_l, z_{l-1}^{(i)}) \text{ for } l = 1,...,k, \qquad z_0^{(i)} = x^{(i)}$

- ▶ $v_1, ..., v_k$ are the weights of each layer *I* ▶ ϕ_l denotes the *I*th layer with input z_{l-1} and output z_l ▶ $c_l^{(l)}(z_l) = 2(z_l - l_l)$
- $f^{(i)}(\hat{y}) = \mathcal{L}(\hat{y}, y^{(i)})$ are losses on the data $x^{(i)}$
- r₁ are regularizations

Definition of a chain of layers

Definition

A function $\psi : \mathbb{R}^p \to \mathbb{R}^q$ is a *chain of k layers*, if it is defined for $w = (v_1; \ldots; v_k) \in \mathbb{R}^p$ with $v_l \in \mathbb{R}^{\pi_l}$ by

$$\psi(w) = z_k,$$

with

$$z_l = \phi_l(v_l, z_{l-1})$$
 for $l = 1, \dots, k$, $z_0 = x$,

where $x \in \mathbb{R}^{\delta_0}$ and $\phi_l : \mathbb{R}^{\pi_l} \times \mathbb{R}^{\delta_{l-1}} \to \mathbb{R}^{\delta_l}$.

Generic formulation

The objective reads then

$$\min_{w} f(\psi(w)) + r(w)$$

where $f = \sum_{i} f^{(i)}$, $r = \sum_{i} r_{i}$, $\psi = (\psi_{x^{(1)}}; \dots; \psi_{x^{(n)}})$.

Questions:

- 1. What smoothness properties can be stated for ψ ?
- 2. How this applies to specific layers used in deep learning?
- 3. (How the structure of ψ is exploited to compute optim. oracles?)

Generic recursive smoothness bounds

Proposition

Given a chain ψ of k layers by layers ϕ_l , that are ℓ_{ϕ_l} Lipschitz-continuous and L_{ϕ_l} smooth,

(i) An estimate of the Lipschitz-continuity of the chain ψ is given by $\ell_{\psi} = \ell_k$, where for $l \in \{1, ..., k\}$,

$$\ell_I = \ell_{\phi_I} + \ell_{I-1}\ell_{\phi_I}, \qquad \ell_0 = 0.$$

(ii) An estimate of the smoothness of the chain ψ is given by $L_{\psi} = L_k$, where for $l \in \{1, \ldots, k\}$,

$$L_{l} = L_{l-1}\ell_{\phi_{l}} + L_{\phi_{l}}(1 + \ell_{l-1})^{2}, \qquad L_{0} = 0.$$

Generic recursive smoothness bounds

Proposition

Given a chain ψ of k layers by layers ϕ_l , that are ℓ_{ϕ_l} Lipschitz-continuous and L_{ϕ_l} smooth,

(i) An estimate of the Lipschitz-continuity of the chain ψ is given by $\ell_{\psi} = \ell_k$, where for $l \in \{1, ..., k\}$,

$$\ell_I = \ell_{\phi_I} + \ell_{I-1}\ell_{\phi_I}, \qquad \ell_0 = 0.$$

(ii) An estimate of the smoothness of the chain ψ is given by $L_{\psi} = L_k$, where for $l \in \{1, \ldots, k\}$,

$$L_{l} = L_{l-1}\ell_{\phi_{l}} + L_{\phi_{l}}(1 + \ell_{l-1})^{2}, \qquad L_{0} = 0.$$

Problem: Layers of deep neural networks are neither Lipschitz continuous nor smooth, needs to dwell into specific structure.

Smoothness details

Layers of deep neural network read

$$\phi_l(v_l, z_{l-1}) = a_l(b_l(v_l, z_{l-1}))$$

where

 \blacktriangleright b_l is linear in v_l, affine in z_{l-1},

▶ a_l is non-linear, defined by an element-wise application of an activation function, potentially followed by a pooling operation

Smoothness details

Layers of deep neural network read

$$\phi_l(v_l, z_{l-1}) = a_l(b_l(v_l, z_{l-1}))$$

where

 \blacktriangleright b_l is linear in v_l, affine in z_{l-1},

a_l is non-linear, defined by an element-wise application of an activation function, potentially followed by a pooling operation

Examples:

Fully connected layer

$$Z_{l} = V_{l}^{\top} Z_{l-1} + \nu_{l} \mathbf{1}_{m}^{\top}$$

- $z_{l} = \operatorname{Vect}(Z_{l}), v_{l} = \operatorname{Vect}((V_{l}^{\top}, \nu_{l})^{\top}),$
- $b_{l}(v_{l}, z_{l-1}) = \operatorname{Vect}(V_{l}^{\top} Z_{l-1}) + \operatorname{Vect}(\nu_{l} \mathbf{1}_{m}^{\top})$

Smoothness details

Layers of deep neural network read

$$\phi_l(v_l, z_{l-1}) = a_l(b_l(v_l, z_{l-1}))$$

where

 \blacktriangleright b_l is linear in v_l, affine in z_{l-1},

a_l is non-linear, defined by an element-wise application of an activation function, potentially followed by a pooling operation

Examples:

Fully connected layer

$$Z_l = V_l^\top Z_{l-1} + \nu_l \mathbf{1}_m^\top$$

- $z_l = \operatorname{Vect}(Z_l), \ v_l = \operatorname{Vect}((V_l^\top, \nu_l)^\top),$

- $b_l(v_l, z_{l-1}) = \operatorname{Vect}(V_l^\top Z_{l-1}) + \operatorname{Vect}(\nu_l \, \mathbf{1}_m^\top)$

Applies also to convolutional layers with vectorized images

Recursive smoothness bound for deep networks

Proposition

For a chain of layers ψ defined by layers of the form

$$\phi_l(v_l, z_{l-1}) = a_l(b_l(v_l, z_{l-1}))$$

the boundedness, Lipschitz continuity and smoothness of ψ on a bounded set can be estimated by a forward pass on the network, given smoothness properties of each layer.

Recursive smoothness bound for deep networks

Proposition

For a chain of layers ψ defined by layers of the form

$$\phi_l(v_l, z_{l-1}) = a_l(b_l(v_l, z_{l-1}))$$

the boundedness, Lipschitz continuity and smoothness of ψ on a bounded set can be estimated by a forward pass on the network, given smoothness properties of each layer.

Implementation

- We provide a list of smoothness constants for supervised, unsupervised objectives and various layers.
- This can be automatically plugged in an automatic differentiation package as PyTorch or tensor Flow.

VGG Network

Architecture

Benchmark architecture for image classification in 1000 classes, composed of 16 layers:

$$0 \ x_{i} \in \mathbb{R}^{224 \times 224 \times 3},$$

$$1 \ \phi_{1}(v, z) = a_{\text{ReLu}}(b_{\text{conv}}(v, z))$$

$$2 \ \phi_{2}(v, z) = p_{\max}(a_{\text{ReLu}}(b_{\text{conv}}(v, z)))$$

$$\vdots$$

$$16 \ \phi_{16}(v, z) = a_{\text{softmax}}(b_{\text{full}}(v, z) + \tilde{b}_{\text{full}}(v))$$

$$17 \ f(\hat{y}) = \sum_{i=1}^{n} \mathcal{L}_{\log}(\hat{y}_{i}, y_{i})/n$$

Introduce batch-normalization as modified layer

$$\phi_l(v_l, z_{l-1}) = a_l(b_l(v_l, c_l(z_{l-1})))$$

where for $z = {
m Vect}(Z)$ with $Z \in \mathbb{R}^{d imes n}$, $c(z) = ilde{Z}$ defined as

$$(\tilde{Z})_{ij} = rac{Z_{ij} - \mu_i}{\epsilon + \sigma_i},$$

with $\mu_i = rac{1}{m} \sum_{j=1}^m Z_{ij}, \quad \sigma_i^2 = rac{1}{m} \sum_{j=1}^m (Z_{ij} - \mu_i)^2.$

Batch-normalization effect

Compare Lipschitz and smoothness bounds obtained with or without batch-norm on the smoothed VGG architecture.

Batch-normalization effect

Compare Lipschitz and smoothness bounds obtained with or without batch-norm on the smoothed VGG architecture.

Corrects "How does batch normalization help optimization?" of [Santurkar et al, 2018] that studies non-Lipschitz-continuous batch-norm ($\epsilon = 0$)

Batch-normalization effect

Compare Lipschitz and smoothness bounds obtained with or without batch-norm on the smoothed VGG architecture.

- Corrects "How does batch normalization help optimization?" of [Santurkar et al, 2018] that studies non-Lipschitz-continuous batch-norm ($\epsilon = 0$)
- Our framework can be used to quickly compare architectures given their components in terms of smoothness

Conclusion

Smoothness properties

- Automatic framework to compute estimates of the smoothness properties
- Can be used to design architectures in a principled way