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Structure of Deep Neural Networks

Training of a deep neural network of k layers reads

min
v1,...,vk

n∑
i=1

fi (z
(i)
k ) +

k∑
l=1

rl(vl)

subject to z
(i)
l = φl(vl , z

(i)
l−1) for l = 1, . . . , k, z

(i)
0 = x (i)

I v1, . . . , vk are the weights of each layer l
I φl denotes the l th layer with input zl−1 and output zl
I f (i)(ŷ) = L(ŷ , y (i)) are losses on the data x (i)

I rl are regularizations
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Definition of a chain of layers

Definition
A function ψ : Rp → Rq is a chain of k layers, if it is defined for
w = (v1; . . . ; vk) ∈ Rp with vl ∈ Rπl by

ψ(w) = zk ,

with zl = φl(vl , zl−1) for l = 1, . . . , k, z0 = x ,

where x ∈ Rδ0 and φl : Rπl × Rδl−1 → Rδl .

z0

Input

φ1

v1

. . . `l

vl

φl

. . . φk

vk

zk = ψ(z0,w)

Output

Linear operation

e.g. product v>l zl−1

Non-linear operation

e.g., sigmoid

zl−1 zl

3 / 11



Generic formulation

The objective reads then

min
w

f (ψ(w)) + r(w)

where f =
∑

i f
(i), r =

∑
l rl , ψ = (ψx(1) ; . . . ;ψx(n)).

Questions:
1. What smoothness properties can be stated for ψ?

2. How this applies to specific layers used in deep learning?

3. (How the structure of ψ is exploited to compute optim. oracles?)
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Generic recursive smoothness bounds

Proposition
Given a chain ψ of k layers by layers φl , that are `φl Lipschitz-continuous and
Lφl smooth,

(i) An estimate of the Lipschitz-continuity of the chain ψ is given by `ψ = `k ,
where for l ∈ {1, . . . , k},

`l = `φl + `l−1`φl , `0 = 0.

(ii) An estimate of the smoothness of the chain ψ is given by Lψ = Lk , where
for l ∈ {1, . . . , k},

Ll = Ll−1`φl + Lφl (1+ `l−1)
2, L0 = 0.

Problem: Layers of deep neural networks are neither Lipschitz continuous nor
smooth, needs to dwell into specific structure.
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Smoothness details

Layers of deep neural network read

φl(vl , zl−1) = al
(
bl(vl , zl−1)

)
where
I bl is linear in vl , affine in zl−1,
I al is non-linear, defined by an element-wise application of an activation

function, potentially followed by a pooling operation

Examples:
I Fully connected layer

Zl = V>l Zl−1 + νl 1>m
- zl = Vect(Zl ), vl = Vect((V>l , νl )

>),
- bl (vl , zl−1) = Vect(V>l Zl−1) + Vect(νl 1>m )

I Applies also to convolutional layers with vectorized images
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Recursive smoothness bound for deep networks

Proposition
For a chain of layers ψ defined by layers of the form

φl(vl , zl−1) = al
(
bl(vl , zl−1)

)
the boundedness, Lipschitz continuity and smoothness of ψ on a bounded set
can be estimated by a forward pass on the network, given smoothness
properties of each layer.

Implementation
I We provide a list of smoothness constants for supervised, unsupervised

objectives and various layers.
I This can be automatically plugged in an automatic differentiation package

as PyTorch or tensor Flow.
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VGG Network

Architecture
Benchmark architecture for image classification in 1000 classes, composed of
16 layers:

0 xi ∈ R224×224×3,

1 φ1(v , z) = aReLu(bconv(v , z))

2 φ2(v , z) = pmax(aReLu(bconv(v , z)))

...

16 φ16(v , z) = asoftmax(bfull(v , z) + b̃full(v))

17 f (ŷ) =
∑n

i=1 Llog(ŷi , yi )/n
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Batch-normalization effect

Introduce batch-normalization as modified layer

φl(vl , zl−1) = al
(
bl(vl , cl(zl−1))

)
where for z = Vect(Z) with Z ∈ Rd×n, c(z) = Z̃ defined as

(Z̃)ij =
Zij − µi

ε+ σi
,

with µi =
1
m

m∑
j=1

Zij , σ2
i =

1
m

m∑
j=1

(Zij − µi )
2.
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Batch-normalization effect

Compare Lipschitz and smoothness bounds obtained with or without
batch-norm on the smoothed VGG architecture.

for ε = 10−2,
`VGG ≤ `VGG-batch
LVGG ≤ LVGG-batch

for ε = 102,
`VGG ≥ `VGG-batch
LVGG ≥ LVGG-batch

I Corrects "How does batch normalization help optimization?" of [Santurkar
et al, 2018] that studies non-Lipschitz-continuous batch-norm (ε = 0)

I Our framework can be used to quickly compare architectures given their
components in terms of smoothness
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Conclusion

Smoothness properties
I Automatic framework to compute estimates of the smoothness properties
I Can be used to design architectures in a principled way
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