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Convex Optimization
Consider for f : Rd → R closed convex,

min
x

f (x)

Accelerated Gradient method convergence ingredients:
I Smoothness ‖∇f (x)−∇f (y)‖2≤L‖x−y‖2 for all x , y ∈ dom f

f (y) ≤ f (x)+∇f (x)>(y−x)+
L

2
‖x−y‖22 for allx , y ∈ dom f

→ upper bound at each iterate
I Convexity

f (y) ≥ f (x) +∇f (x)>(y − x) for all x , y ∈ dom f

→ lower bound on previous iterates

Provides convergence at rate O(1/k2)
[Nesterov, 1983; Diakonikolas and Orecchia, 2019]
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Additional assumptions

Strong convexity

f (y) ≥ f (x) +∇f (x)>(y − x) +
µ

2
‖x − y‖22 for all x , y ∈ dom f

→ provides linear rate of convergence to the minimum

Can we relax strong convexity assumption
and still get faster rates than plain convexity ?

Here using error bounds and restarts of accelerated gradient
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Hölderian Error Bounds
Definition
A function f satisfies a Hölderian error bound on a set K if there
exist r ≥ 1, µ > 0, s.t.

µ

r
d(x ,X ∗)r ≤ f (x)− f ∗, for all x ∈ K , (HEBr, µ(K))

where f ∗ = min f , X ∗ = argmin f , d(x ,X ∗) = miny∈X∗ ‖x − y‖2

Lower bound on the function around minimizers

X∗

x → f(x)
x → µd(x,X∗)

X∗

x → f(x)
x →

µ

2d(x,X
∗)2

r = 1 (sharp) r = 2 (≈ strongly convex)
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Hölderian Error Bounds
Hölderian error bound

µ

r
d(x ,X ∗)r ≤ f (x)− f ∗, for all x ∈ K , (HEBr, µ(K))

Remarks
I covers strong convexity (r = 2)
I covers `1,p regularization of Least-Squares (r = 2)

min
x
‖Ax − b‖22 + ‖x‖1,p

[Zhou et al., 2015; Drusvyatskiy and Lewis, 2018]
I covers zero-sum game problems (r = 1)

min
x∈∆
{f (x) = max

y∈∆
x>Ay}

[Gilpin et al., 2012]
I equivalent to Łojasiewicz inequality (gradient dominated)

[Bolte et al., 2017]
I generically satisfied by subanalytic functions (r unknown)

[Łojasiewicz, 1963; Bolte et al., 2007]
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Error Bound and Smoothness

Combining (HEBr, µ(K)) lower bound and smoothness upper bound,

µ

r
d(x ,X ∗)r ≤ f (x)− f ∗ ≤ L

2
d(x ,X ∗)2

We get

0 <
2µ
rL
≤ d(x ,X ∗)2

d(x ,X ∗)r

Consequences:
I Necessarily 2 ≤ r (take x → X ∗)
I If 2 < r , only valid on subset of dom f ,here

K = S0 , {x : f (x) ≤ x0}
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Restarts

Principle:
Run accelerated algo on the cvx pb, stop it, restart from last iterate.

Question: When must the algorithm be stopped ?

This talk [R. and d’Aspremont, 2017]:
I schedule the restarts in advance
→ requires all parameters to be known

I stop when gap has decreased by constant factor
→ requires knowing f ∗
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Scheduled restarts
Accelerated gradient [Nesterov, 1983]
Starting from x̄ , outputs after t iterations

x̂ = A(x̄ , t) s.t. f (x̂)− f ∗ ≤ 4L
t2

d(x̄ ,X ∗)2,

Scheduled restart
Schedule restarts in advance at times tk and build from x0 ∈ Rd

xk = A(xk−1, tk)

Ingredients
Combine convergence bound and sharpness

f (xk)−f ∗ ≤ 4L
t2k

d(xk−1,X
∗)2 and

µ

r
d(xk−1,X

∗)r ≤ f (xk−1)−f ∗

So f (xk)− f ∗ ≤ cL,µ,r
t2k

(f (xk−1)− f ∗)2/r

1. Fix 0 < γ < 1, find (tk)k≥1 s.t. f (xk)−f ∗≤γ(f (xk−1)−f ∗)
2. Optimize γ for optimal rate w.r.t. N =

∑R
i=1 tk after R restarts
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Optimal Schedule

Proposition [R. and d’Aspremont, 2017]

For f convex, L-smooth satisfying (HEBr, µ(S0)), denote

τ = 1− 2/r ∈ [0, 1) and κ = L/µ2/r

Run scheduled restarts with

tk = Cτ,κe
τk

After R restarts and N =
∑R

i=1 tk total iterations, we get x̂ s.t.

f (x̂)− f ∗ = O
(
exp(−κ−1/2N)

)
when τ = 0 (1)

f (x̂)− f ∗ = O
(
N−2/τ

)
when τ > 0 (2)

Remarks
I Retrieve accelerated rate for strongly convex functions,
I Optimal for this class of problems [Nemirovskii and Nesterov, 1985]
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I Detailed bound continuous in τ :

for τ → 0, right hand side of (2) → right hand side of (1)
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Parameter-free strategy

Adaptive strategy (log-scale grid search)
Given a fixed budget of iterations N, search with schedules like

tk = Ceτk (3)

I Grid on C limited by N

I Grid on C limited by continuity of the bounds in τ

Proposition [R. and d’Aspremont, 2017]

For f convex, L-smooth satisfying (HEBr, µ(S0)), run restart
schemes with schedules of the form (3) on a log2-scale grid for a
budget of N iterations.
Get one scheme nearly optimal up to a factor 4, costs (log2 N)2

times more than running optimal schedule for N iterations
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Restarts with sufficient gap decrease

Scheme
Assume f ∗ is known, run accelerated algo from xk−1, stop for yt s.t.

f (yt)− f ∗ ≤ γ(f (xk−1)− f ∗) (4)

where γ < 1 and iterate the process with xk = yt

Proposition [R. and d’Aspremont, 2017]

For f convex, L-smooth satisfying (HEBr, µ(S0)), restarts
monitoring the decrease gap (4) with γ = e−2 do not worse than
the optimal scheduled restart.

Remark:
I Does not need any knowledge of the parameters
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Gradient Descend Analysis

Gradient descend convergence rate can be written

f (xk+t)− f ∗ ≤ L

t
d(xk ,X

∗)2, for any t, k ≥ 0

→ same analysis can be done under the HEB property

Proposition [R. and d’Aspremont, 2017]

For f convex, L-smooth satisfying (HEBr, µ(S0)), denote

τ = 1− 2/r ∈ [0, 1) and κ = L/µ2/r

After N iterations of the gradient descend, we get x̂ s.t.

f (x̂)− f ∗ = O (exp(−κN)) when τ = 0

f (x̂)− f ∗ = O
(
N−1/τ

)
when τ > 0
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Composite problems
Consider

min
x

f (x) , h(x) + g(x) (5)

with h smooth convex, g prox-friendly convex.

Accelerated algorithm [Nesterov, 2013]
Started at xk−1, outputs after tk iterations xk s.t.

f (xk)− f ∗ ≤ 4L
t2k

d(xk−1,X
∗)2

Same bound → same analysis.

Corollary
For f defined as in (5) with h L-smooth, g prox-friendly, if f
satisfies (HEBr, µ(S0)), then scheduled restarts and restarts on
decreasing gap have same complexities as presented before.

Remark:
I Captures `1,p regularization
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Non-smooth and Hölder smooth

Generic smoothness For f convex,

‖∇f (x)−∇f (y)‖2 ≤
L

s
‖x − y‖s2 for all x , y ∈ dom f (Ss, L)

and any ∇f (x) ∈ ∂f (x), ∇f (y) ∈ ∂f (y).

I for s = 1 retrieves assumption for non-smooth cvx functions
I for 1 < s < 2 gets definition of Hölder smooth functions

Combined with Hölderian error bounds
Assume f satisfies (Ss, L) and (HEBr, µ(S0)) then necessary

s ≤ r
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Schedule restarts

Universal fast gradient method [Nesterov, 2015]
Starting from x̄ , given a target accuracy ε, outputs after t iterations

x̂ = U(x̄ , t, ε) s.t. f (x̂)− f ∗ ≤ ε

2
+

cL
2
s d(x̄ ,X ∗)2

ε
2
s t

2ρ
s

ε

2

with ρ = 3s/2− 1

Universal scheduled restart
Schedule restarts at times tk with precision εk , i.e.

xk = U(xk−1, tk , εk)

starting from x0 ∈ dom f and ε0 ≥ f (x0)− f ∗
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Optimal Schedule
Proposition [R. and d’Aspremont, 2017]

For f convex, satisfying (Ss, L) and (HEBr, µ(S0)) denote

τ = 1− s/r ∈ [0, 1) and κ = L2/s/µ2/r

Run scheduled restarts with

tk = Cτ,κe
τk , εk = e−ρεk−1

After R restarts and N =
∑R

i=1 tk total iterations, we get x̂ s.t.

f (x̂)− f ∗ = O
(
exp(−κ−s/2ρN)

)
when τ = 0

f (x̂)− f ∗ = O
(
N−ρ/τ

)
when τ > 0

Remarks
I Optimal for this class of problems [Nemirovskii and Nesterov, 1985]

I Log-scale grid-search fails to get nearly optimal rate
I Needs to stay in the initial sub-level set, which can be enforced
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Restarts with sufficient gap decrease

Scheme
Assume f ∗ is known, run universal fast algo from xk−1, with
precision εk = γ(f (xk−1)− f ∗), stop when it outputs xk s.t.

f (xk)− f ∗ ≤ εk (6)

where γ < 1 and iterate the process

Proposition [R. and d’Aspremont, 2017]

For f convex, satisfying (Ss, L) and (HEBr, µ(S0)), restarts
monitoring the decrease gap (6) with γ = e−ρ do not worse than
the optimal scheduled restart.

Remark:
I Does not need any knowledge of the parameters
I Taking γ = e−1 is suboptimal by a factor at most 1.3
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Smoothable objectives

Consider
min
x

f (x) , φ(Ax) + g(x)

with φ non-smooth cvx with analytically computable Moreau
envelope, g cvx prox-friendly, e.g., matrix sum-game

Smoothing and acceleration [Nesterov, 2005]
Starting from x̄ , given a target accuracy ε, outputs after t iterations

x̂ = S(x̄ , ε, t) s.t. f (x̂)− f ∗ ≤ ε

2
+

cL2
ψ∗,ADh(x̄ ,X ∗)

ε2t2
ε

2
,

Similar bound → same analysis

Remark
I Retrieves algorithm of [Gilpin et al., 2012] for zero-sum games
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Numerical Illustrations

Classification on UCI dataset (n = 206 samples, d = 60 features), compare
I Restarts enforcing monotonicity, Mono

i.e., stop and restart when f (yt+1) ≥ f (yk)

I Best scheduled restart found by grid-search Adap
I Restart with f ∗ known Crit
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Least-squares, Logistic, Dual SVM.
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Conclusion

Restarts get fastest rates for convex problem with error bounds

Yet, needs adaptivity,
I adaptivity to unknown µ for r = 2 [Fercoq and Qu, 2016, 2017]

I here for smooth problems and any µ, r
I universal restart scheme any r , s, µ, L [Renegar and Grimmer, 2018]

Extensions
I applies also to conditional gradient [Kerdreux et al., 2019]

Thanks ! Questions ?
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Sparse Recovery Problems
Recovery objective
Recover a s-sparse signal x̄ ∈ Rd from n < d linear observations

bi = aTi x̄ , i ∈ {1, . . . , n}

Decoding procedure

min
x
‖x‖1

subject to Ax = b

Recovery threshold

Given A ∈ Rn×d , denote smax(A) its recovery threshold s.t. for any
x̄ is s-sparse, if s < smax(A), then is the unique solution of

min
x
‖x‖1

subject to Ax = Ax̄
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Recovery performance

Proposition [R., Boumal and d’Aspremont, 2019]

Given A ∈ Rn×d and x̄ , s-sparse, with s < smax(A),

‖x‖1−‖x∗‖1 > (1−
√

s/smax(A))‖x−x∗‖1 ∀x : Ax = Ax∗, x 6= x∗

so the decoding problem satisfies (HEB1, µ)

Rate of convergence of optimal restart scheme reads

‖x̂‖1 − ‖x∗‖1 = O
(
exp
(
−
(
1−

√
s/smax(A)

)
N
))
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Illustration

For random observation matrix A, smax(A) ≈ n/ log d

So to recover s-sparse signals, needs n ≈ s log d

Convergence rate of optimal restart

‖x̂‖1 − ‖x∗‖1 = O
(
exp
(
−
(
1− c

√
s log d/n

)
N
))

27 / 24
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