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Convex Optimization
Consider for f : R? — R closed convex,

min  f(x)

X
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Convex Optimization
Consider for f : R? — R closed convex,

min  f(x)

X

Accelerated Gradient method convergence ingredients:
» Smoothness |VF(x)=Vf(y)|2<L||x—y|2 for all x,y € dom f

L
fly) < f(x)—|—Vf(x)T(y—x)—|—§||x—y||§ for allx,y € dom f

— upper bound at each iterate

» Convexity
f(y) > f(x)+ VF(x)"(y —x) forallx,y € domf

— lower bound on previous iterates

Provides convergence at rate O(1/k?)
[Nesterov, 1983; Diakonikolas and Orecchia, 2019]
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Additional assumptions
Strong convexity

fly)>f(x)+ Vf(x)T(y —x)+ ng — yH% for allx,y € dom f

— provides linear rate of convergence to the minimum
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Additional assumptions

Strong convexity
fy) > f(x)+ VF(x)(y —x) + gHX —yl||3 forall x,y € dom f
— provides linear rate of convergence to the minimum

Can we relax strong convexity assumption
and still get faster rates than plain convexity 7
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Additional assumptions

Strong convexity
fy) > f(x)+ VF(x)(y —x) + gHX —yl||3 forall x,y € dom f
— provides linear rate of convergence to the minimum

Can we relax strong convexity assumption
and still get faster rates than plain convexity 7

Here using error bounds and restarts of accelerated gradient
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Error Bounds

Restarts of Smooth Functions

Restart for Non-smooth Functions
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Plan

Error Bounds
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Holderian Error Bounds

Definition
A function f satisfies a Holderian error bound on a set K if there
exist r > 1, u >0, s.t.

%d(X,X*)’ < f(x)—f", forall x €K, (HEB:, 4(K))

where f* = minf, X* = argminf, d(x, X*) = minyex- [|[x — y/2
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Holderian Error Bounds

Definition
A function f satisfies a Holderian error bound on a set K if there
exist r > 1, u >0, s.t.

%d(X,X*)’ < f(x)—f", forall x €K, (HEB:, 4(K))

where f* = minf, X* = argminf, d(x, X*) = minyex- [|[x — y/2

Lower bound on the function around minimizers

—z — f(2)
—z = f(2) 7; — %d?z,X*V
—x — pd(z, X*)

r =1 (sharp) r = 2 (= strongly convex)
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Holderian Error Bounds
Holderian error bound

%d(X,X*)' < f(x)— f*, forall x € K, (HEB,, 4(K))

Remarks
> covers strong convexity (r = 2)
» covers /1 , regularization of Least-Squares (r = 2)

min | Ax — bl + x|

[Zhou et al., 2015; Drusvyatskiy and Lewis, 2018]
» covers zero-sum game problems (r = 1)

in{f(x) = TA
min{f(x) max X v}

[Gilpin et al., 2012]

» equivalent to tojasiewicz inequality (gradient dominated)
[Bolte et al., 2017]

» generically satisfied by subanalytic functions (r unknown)

[Lojasiewicz, 1963; Bolte et al., 2007]
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Error Bound and Smoothness

Combining (HEB,, ,(K)) lower bound and smoothness upper bound,
L
Bd(x, X*) < F(x) = £ < Zd(x, X"

We get
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Error Bound and Smoothness

Combining (HEB,, ,(K)) lower bound and smoothness upper bound,
L
Bd(x, X*) < F(x) = £ < Zd(x, X"

We get

Consequences:
> Necessarily 2 < r (take x — X*)

» If 2 < r, only valid on subset of dom f,here
K=50= {x:f(x)<x}
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Plan

Restarts of Smooth Functions
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Restarts

Principle:
Run accelerated algo on the cvx pb, stop it, restart from last iterate.

Question: When must the algorithm be stopped ?

This talk [R. and d’Aspremont, 2017]:

» schedule the restarts in advance
— requires all parameters to be known

» stop when gap has decreased by constant factor
— requires knowing *
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Scheduled restarts
Accelerated gradient [Nesterov, 1983]
Starting from X, outputs after t iterations

4L
=A%, t) st. f(R)—f< ?d(x,x*)Z,
Scheduled restart
Schedule restarts in advance at times t, and build from xy € R

X = A(Xk—1, tk)
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Scheduled restarts

Accelerated gradient [Nesterov, 1983]
Starting from X, outputs after t iterations

=A%, t) st f(R)—f* g%d( L X*)2,

Scheduled restart

Schedule restarts in advance at times t, and build from xy € R
Xk = A(Xk—1, tk)

Ingredients

Combine convergence bound and sharpness

41
F)—f" < Hd(xcn, X and %d(xk_l,X*)r < Fxe_1)—F*
k

So Fla) — £ < S5 (F(xia) — £
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Scheduled restarts

Accelerated gradient [Nesterov, 1983]

Starting from X, outputs after t iterations
~ — ~ * 4L = *\2
X=A(x,t) st. f(X)—Ff" < ?d(x,X ),

Scheduled restart
Schedule restarts in advance at times t, and build from xy € R

X = A(Xk—1, tk)

Ingredients
Combine convergence bound and sharpness

4L
f(xk)—f" < ?d(xk_l,X*)2 and %d(xk_l,X*)r < f(xg—1)—f"
k
So Fla) — £ < S5 (F(xia) — £
1. Fix 0 <y <1, find (tk)k21 s.t. f(Xk)—f*S"y(f(kal)—f*)
2. Optimize v for optimal rate w.r.t. N = Zﬁl ty after R restarts

11/24



Optimal Schedule

Proposition [R. and d'Aspremont, 2017]
For f convex, L-smooth satisfying (HEB,, ,(S0)), denote

r=1-2/ref0,1) and x=L/p?"
Run scheduled restarts with
t, = CT’KeTk

After R restarts and N = Zﬁl t total iterations, we get X s.t.

F(R) - f =0 (exp(_ﬁfl/z’/v)) when7=0 (1)
F(R)—f* =0 (N—2/T) when >0  (2)
Remarks

» Retrieve accelerated rate for strongly convex functions,

» Optimal for this class of problems [Nemirovskii and Nesterov, 1985]
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Optimal Schedule

Proposition [R. and d'Aspremont, 2017]
For f convex, L-smooth satisfying (HEB,, ,(So)), denote

r=1-2/ref0,1) and x=L/p?"
Run scheduled restarts with
t = CT,,.;eTk
After R restarts and N = 2;11 t, total iterations, we get X s.t.
f(x)—f*=0 (exp(—kfl/zN)> when 7 =0 (1)

F(R)—f* =0 (N‘z/T) when7>0  (2)

4

Technical detail

» Detailed bound continuous in T:
for 7 — 0, right hand side of (2) — right hand side of (1)
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Parameter-free strategy

Adaptive strategy (log-scale grid search)
Given a fixed budget of iterations N, search with schedules like

ty = Ce™ (3)
» Grid on C limited by N
» Grid on C limited by continuity of the bounds in 7
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Parameter-free strategy

Adaptive strategy (log-scale grid search)
Given a fixed budget of iterations N, search with schedules like

t = Ce™* (3)

» Grid on C limited by N
» Grid on C limited by continuity of the bounds in 7

Proposition [R. and d'Aspremont, 2017]

For f convex, L-smooth satisfying (HEB,, ,(So)), run restart
schemes with schedules of the form (3) on a log,-scale grid for a
budget of N iterations.

Get one scheme nearly optimal up to a factor 4, costs (log, N)?
times more than running optimal schedule for N iterations
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Restarts with sufficient gap decrease

Scheme
Assume f* is known, run accelerated algo from x,_1, stop for y; s.t.

f(ye) = 7 <A(Fxk—1) — 7) (4)

where v < 1 and iterate the process with x, = y;
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Restarts with sufficient gap decrease

Scheme
Assume f* is known, run accelerated algo from x,_1, stop for y; s.t.

flye) = 7 <A(F(k-1) — 1) (4)
where v < 1 and iterate the process with x, = y;

Proposition [R. and d'Aspremont, 2017]

For f convex, L-smooth satisfying (HEB,, ,(S0)), restarts
monitoring the decrease gap (4) with v = e~2 do not worse than
the optimal scheduled restart.

Remark:

» Does not need any knowledge of the parameters
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Gradient Descend Analysis

Gradient descend convergence rate can be written
* L *\2
f(xkgt) — FF < ?d(xk,X )-, foranyt,k>0

— same analysis can be done under the HEB property
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Gradient Descend Analysis

Gradient descend convergence rate can be written
* L *\2
f(xkye) — FF < ?d(xk,X )5, foranyt,k>0

— same analysis can be done under the HEB property

Proposition [R. and d'Aspremont, 2017]
For f convex, L-smooth satisfying (HEB,, ,(So)), denote
r=1-2/re[0,1) and x=L/p?"
After N iterations of the gradient descend, we get X s.t.
f(X) — f* = O (exp(—rN)) when 7 =0
F(R) - =0 (N—l/T) when 7 > 0
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Plan

Restart for Non-smooth Functions
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Composite problems

Consider
min f(x) = h(x) + g(x) (5)

with h smooth convex, g prox-friendly convex.

Accelerated algorithm [Nesterov, 2013]
Started at x,_1, outputs after tj iterations x s.t.

4L
fxe) — F* < ?d(xk_l,X*)z
k
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Composite problems
Consider
min f(x) = h(x) + g(x) ()

with h smooth convex, g prox-friendly convex.

Accelerated algorithm [Nesterov, 2013]
Started at x,_1, outputs after tj iterations x s.t.

41

flxk) — " < ?d(xk_l,X*)z
k

Same bound — same analysis.

Corollary

For f defined as in (5) with h L-smooth, g prox-friendly, if f
satisfies (HEB,, ,(S0)), then scheduled restarts and restarts on
decreasing gap have same complexities as presented before.

Remark:

» Captures ¢; ,, regularization .



Non-smooth and Hoélder smooth

Generic smoothness For f convex,
L
IVFf(x) = Vf(y)ll2 < EHX —yl3 forallx,y €edomf (Ss )

and any Vf(x) € 0f(x), Vf(y) € 9f(y).

» for s = 1 retrieves assumption for non-smooth cvx functions

» for 1 < s < 2 gets definition of Hdlder smooth functions
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Non-smooth and Hoélder smooth

Generic smoothness For f convex,
L
IVFf(x) = Vf(y)ll2 < EHX —yl3 forallx,y €edomf (Ss )

and any Vf(x) € 9f(x), Vf(y) € 0f(y).

» for s = 1 retrieves assumption for non-smooth cvx functions

» for 1 < s < 2 gets definition of Hdlder smooth functions

Combined with Hélderian error bounds
Assume f satisfies (S, ) and (HEB,, ,(So)) then necessary

s<r

18 /24



Schedule restarts

Universal fast gradient method [Nesterov, 2015]
Starting from X, given a target accuracy e, outputs after t iterations

cLd(x, X*)?
+ 2 2p
€s t s

R=UR te) st. F(R)—F < % %
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Schedule restarts

Universal fast gradient method [Nesterov, 2015]
Starting from X, given a target accuracy e, outputs after t iterations

cLd(x, X*)?
+ 2 2p
€s t s

R=UR te) st. F(R)—F < % %
with p=3s/2 -1

Universal scheduled restart
Schedule restarts at times t; with precision e, i.e.

X = U(Xk—1, ti, €k)

starting from xp € dom f and ¢y > f(xp) — f*
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Optimal Schedule
Proposition [R. and d’'Aspremont, 2017]
For f convex, satisfying (Ss ) and (HEB;, ,(So)) denote
r=1-s/rel0,1) and r=L%%/u%"
Run scheduled restarts with
t = CT,,ﬁeTk7 € =€ Perq

After R restarts and N = 3% #, total iterations, we get X s.t.

F(R) - F* =0 (exp(—n—s/%/v)) when 7 = 0
FR)—F* =0 (N—P/T) when 7 > 0
Remarks

» Optimal for this class of problems [Nemirovskii and Nesterov, 1985]
» Log-scale grid-search fails to get nearly optimal rate
» Needs to stay in the initial sub-level set, which can be enforced
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Restarts with sufficient gap decrease

Scheme
Assume * is known, run universal fast algo from x,_1, with
precision €, = y(f(xxk—1) — f*), stop when it outputs xi s.t.

f(xk) — < e (6)

where 7 < 1 and iterate the process
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Restarts with sufficient gap decrease

Scheme
Assume * is known, run universal fast algo from x,_1, with
precision €, = y(f(xxk—1) — f*), stop when it outputs xi s.t.

Flxie) = " < ex (6)
where 7 < 1 and iterate the process

Proposition [R. and d'Aspremont, 2017]

For f convex, satisfying (Ss ) and (HEB;, ,(S0)), restarts
monitoring the decrease gap (6) with v = e™” do not worse than
the optimal scheduled restart.

Remark:

» Does not need any knowledge of the parameters

» Taking v = e~ ! is suboptimal by a factor at most 1.3
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Smoothable objectives

Consider
min £(x) 2 6(Ax) + g(x)

X

with ¢ non-smooth cvx with analytically computable Moreau
envelope, g cvx prox-friendly, e.g., matrix sum-game
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Smoothable objectives

Consider
min f(x) = ¢(Ax) + g(x)

X

with ¢ non-smooth cvx with analytically computable Moreau
envelope, g cvx prox-friendly, e.g., matrix sum-game

Smoothing and acceleration [Nesterov, 2005]
Starting from X, given a target accuracy e, outputs after t iterations
cL?. ADn(%,X*) ¢

€2t2 2’

£=38(X,et) st. f(X)—Ff" < -+

€
2
Similar bound — same analysis

Remark

» Retrieves algorithm of [Gilpin et al., 2012] for zero-sum games
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Numerical Illustrations

Classification on UCI dataset (n = 206 samples, d = 60 features), compare
» Restarts enforcing monotonicity, Mono
i.e., stop and restart when f(y:+1) > f(yk)
» Best scheduled restart found by grid-search Adap
» Restart with 7* known Crit

M 1008 1008 e
T 10 e T o e TS
® 1 SGrad R0 S Grad x 175G
ha =% Acc - =¢Acc e =¢Acc
5 Mono % Mono -%-Mono
8- Adap -8-Adap -8-Adap
Crit Crit Crit
10710 o 102 10710
0 200 400 600 800 0 500 1000 0 500 1000
lterations lterations Iterations
Least-squares, Logistic, Dual SVM.

23 /24



Conclusion

Restarts get fastest rates for convex problem with error bounds

Yet, needs adaptivity,

» adaptivity to unknown g for r = 2 [Fercoq and Qu, 2016, 2017]
» here for smooth problems and any p, r

» universal restart scheme any r, s, ui, L [Renegar and Grimmer, 2018]

Extensions

» applies also to conditional gradient [Kerdreux et al., 2019]
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Conclusion

Restarts get fastest rates for convex problem with error bounds

Yet, needs adaptivity,
» adaptivity to unknown g for r = 2 [Fercoq and Qu, 2016, 2017]

» here for smooth problems and any p, r

» universal restart scheme any r, s, ui, L [Renegar and Grimmer, 2018]

Extensions

» applies also to conditional gradient [Kerdreux et al., 2019]

Thanks | Questions 7
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Sparse Recovery Problems

Recovery objective
Recover a s-sparse signal X € R? from n < d linear observations

b;::afi, i€{l,...,n}
Decoding procedure
min  ||x||1
X

subject to Ax=b

Recovery threshold

Given A € R"*? denote smax(A) its recovery threshold s.t. for any

X is s-sparse, if s < smax(A), then is the unique solution of
min x|
X

subject to Ax = Ax

25 /24



Recovery performance

Proposition [R., Boumal and d'Aspremont, 2019]

Given A € R"™9 and x, s-sparse, with s < smax(A),

= x> (1= /s smar( AN x—x" 11 ¥x : Ax = Ax*,x # x°
so the decoding problem satisfies (HEB1, ,,)

Rate of convergence of optimal restart scheme reads

£l = Ix* 1 = O (exp (= (1= v/5/5max(A)) V) )
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[[lustration

For random observation matrix A, smax(A) ~ n/ log d
So to recover s-sparse signals, needs n =~ slog d

Convergence rate of optimal restart

181 = Ix*ll = O (exp (= (1= c/sTog d/n) N))
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