Restarts of Accelerated Gradient Methods: Generic Theoretical Speed-up

> Vincent Roulet University of Washginton

West Coast Optimization Meeting Fall 2019

with Alexandre d'Aspremont CNRS, Ecole Normale Superieure

Convex Optimization

Consider for $f : \mathbb{R}^d \to \mathbb{R}$ closed convex,

 $\min_{x} f(x)$

Convex Optimization

Consider for $f : \mathbb{R}^d \to \mathbb{R}$ closed convex,

 $\min_{x} f(x)$

Accelerated Gradient method convergence ingredients:

► Smoothness $\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2$ for all $x, y \in \text{dom } f$ $f(y) \le f(x) + \nabla f(x)^\top (y - x) + \frac{L}{2} \|x - y\|_2^2$ for all $x, y \in \text{dom } f$

 \rightarrow upper bound at each iterate

Convexity

$$f(y) \ge f(x) + \nabla f(x)^{\top}(y-x)$$
 for all $x, y \in \text{dom } f$

 \rightarrow lower bound on previous iterates

Provides convergence at rate $O(1/k^2)$ [Nesterov, 1983; Diakonikolas and Orecchia, 2019]

Additional assumptions

Strong convexity

$$f(y) \geq f(x) +
abla f(x)^{ op} (y-x) + rac{\mu}{2} \|x-y\|_2^2 \quad ext{for all } x, y \in ext{dom } f$$

 \rightarrow provides linear rate of convergence to the minimum

Additional assumptions

Strong convexity

$$f(y) \geq f(x) +
abla f(x)^{ op} (y-x) + rac{\mu}{2} \|x-y\|_2^2 \quad ext{for all } x, y \in ext{dom } f$$

 \rightarrow provides linear rate of convergence to the minimum

Can we relax strong convexity assumption and still get faster rates than plain convexity ?

Additional assumptions

Strong convexity

$$f(y) \geq f(x) +
abla f(x)^{ op} (y-x) + rac{\mu}{2} \|x-y\|_2^2 \quad ext{for all } x,y \in ext{dom } f$$

 \rightarrow provides linear rate of convergence to the minimum

Can we relax strong convexity assumption and still get faster rates than plain convexity ?

Here using error bounds and restarts of accelerated gradient

Error Bounds

Restarts of Smooth Functions

Restart for Non-smooth Functions

Error Bounds

Restarts of Smooth Functions

Restart for Non-smooth Functions

Hölderian Error Bounds

Definition

A function f satisfies a Hölderian error bound on a set K if there exist $r \ge 1$, $\mu > 0$, s.t.

$$\frac{\mu}{r}d(x,X^*)^r \le f(x) - f^*, \quad \text{for all } x \in K, \qquad (\mathsf{HEB}_{\mathsf{r},\ \mu}(\mathsf{K}))$$

where $f^* = \min f$, $X^* = \arg \min f$, $d(x, X^*) = \min_{y \in X^*} ||x - y||_2$

Hölderian Error Bounds

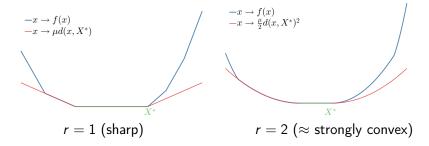
Definition

A function f satisfies a Hölderian error bound on a set K if there exist $r \ge 1$, $\mu > 0$, s.t.

$$\frac{\mu}{r}d(x,X^*)^r \le f(x) - f^*, \quad \text{for all } x \in K, \qquad (\mathsf{HEB}_{\mathsf{r},\ \mu}(\mathsf{K}))$$

where $f^* = \min f$, $X^* = \arg \min f$, $d(x, X^*) = \min_{y \in X^*} ||x - y||_2$

Lower bound on the function around minimizers



Hölderian Error Bounds

Hölderian error bound

$$\frac{\mu}{r}d(x,X^*)^r \le f(x) - f^*, \quad \text{for all } x \in K, \qquad (\mathsf{HEB}_{\mathsf{r},\ \mu}(\mathsf{K}))$$

Remarks

- covers strong convexity (r = 2)
- covers $\ell_{1,p}$ regularization of Least-Squares (r = 2)

$$\min_{x} \|Ax - b\|_2^2 + \|x\|_{1,p}$$

[Zhou et al., 2015; Drusvyatskiy and Lewis, 2018]

• covers zero-sum game problems (r = 1)

$$\min_{x \in \Delta} \{ f(x) = \max_{y \in \Delta} x^\top A y \}$$

[Gilpin et al., 2012]

- equivalent to Łojasiewicz inequality (gradient dominated) [Bolte et al., 2017]
- generically satisfied by subanalytic functions (r unknown) [Łojasiewicz, 1963; Bolte et al., 2007]

Error Bound and Smoothness

Combining (HEB_{r, μ}(K)) lower bound and smoothness upper bound,

$$\frac{\mu}{r}d(x,X^*)^r \le f(x) - f^* \le \frac{L}{2}d(x,X^*)^2$$

We get

$$0 < \frac{2\mu}{rL} \leq \frac{d(x,X^*)^2}{d(x,X^*)^r}$$

Error Bound and Smoothness

Combining (HEB_{r, μ}(K)) lower bound and smoothness upper bound,

$$\frac{\mu}{r}d(x,X^*)^r \le f(x) - f^* \le \frac{L}{2}d(x,X^*)^2$$

We get

$$0 < \frac{2\mu}{rL} \leq \frac{d(x,X^*)^2}{d(x,X^*)^r}$$

Consequences:

- Necessarily $2 \le r$ (take $x \to X^*$)
- If 2 < r, only valid on subset of dom f, here

$$K = S_0 \triangleq \{x : f(x) \le x_0\}$$

Error Bounds

Restarts of Smooth Functions

Restart for Non-smooth Functions

Restarts

Principle:

Run accelerated algo on the cvx pb, stop it, restart from last iterate.

Question: When must the algorithm be stopped ?

This talk [R. and d'Aspremont, 2017]:

- schedule the restarts in advance
 - \rightarrow requires all parameters to be known
- ► stop when gap has decreased by constant factor → requires knowing f*

Scheduled restarts

Accelerated gradient [Nesterov, 1983]

Starting from \bar{x} , outputs after t iterations

$$\hat{x} = \mathcal{A}(\bar{x},t)$$
 s.t. $f(\hat{x}) - f^* \leq rac{4L}{t^2}d(\bar{x},X^*)^2,$

Scheduled restart

Schedule restarts in advance at times t_k and build from $x_0 \in \mathbb{R}^d$

$$x_k = \mathcal{A}(x_{k-1}, t_k)$$

Scheduled restarts

Accelerated gradient [Nesterov, 1983]

Starting from \bar{x} , outputs after t iterations

$$\hat{x} = \mathcal{A}(\bar{x},t)$$
 s.t. $f(\hat{x}) - f^* \leq rac{4L}{t^2}d(\bar{x},X^*)^2,$

Scheduled restart

Schedule restarts in advance at times t_k and build from $x_0 \in \mathbb{R}^d$

$$x_k = \mathcal{A}(x_{k-1}, t_k)$$

Ingredients

Combine convergence bound and sharpness

$$f(x_k) - f^* \le \frac{4L}{t_k^2} d(x_{k-1}, X^*)^2 \quad \text{and} \quad \frac{\mu}{r} d(x_{k-1}, X^*)^r \le f(x_{k-1}) - f^*$$

So
$$f(x_k) - f^* \le \frac{c_{L,\mu,r}}{t_k^2} (f(x_{k-1}) - f^*)^{2/r}$$

Scheduled restarts

Accelerated gradient [Nesterov, 1983]

Starting from \bar{x} , outputs after t iterations

$$\hat{x} = \mathcal{A}(\bar{x},t)$$
 s.t. $f(\hat{x}) - f^* \leq rac{4L}{t^2}d(\bar{x},X^*)^2,$

Scheduled restart

Schedule restarts in advance at times t_k and build from $x_0 \in \mathbb{R}^d$

$$x_k = \mathcal{A}(x_{k-1}, t_k)$$

Ingredients

Combine convergence bound and sharpness

$$f(x_k) - f^* \leq \frac{4L}{t_k^2} d(x_{k-1}, X^*)^2$$
 and $\frac{\mu}{r} d(x_{k-1}, X^*)^r \leq f(x_{k-1}) - f^*$

So
$$f(x_k) - f^* \le \frac{c_{L,\mu,r}}{t_k^2} (f(x_{k-1}) - f^*)^{2/r}$$

1. Fix $0 < \gamma < 1$, find $(t_k)_{k \ge 1}$ s.t. $f(x_k) - f^* \le \gamma(f(x_{k-1}) - f^*)$

2. Optimize γ for optimal rate w.r.t. $N = \sum_{i=1}^{R} t_k$ after R restarts

Optimal Schedule

Proposition [R. and d'Aspremont, 2017]

For f convex, L-smooth satisfying (HEB_{r, μ}(S₀)), denote

$$au = 1 - 2/r \in [0, 1)$$
 and $\kappa = L/\mu^{2/r}$

Run scheduled restarts with

$$t_k = C_{\tau,\kappa} e^{\tau k}$$

After R restarts and $N = \sum_{i=1}^{R} t_k$ total iterations, we get \hat{x} s.t.

$$f(\hat{x}) - f^* = O\left(\exp(-\kappa^{-1/2}N)\right)$$
 when $\tau = 0$ (1)

$$f(\hat{x}) - f^* = O\left(N^{-2/\tau}\right) \qquad \text{when } \tau > 0 \qquad (2)$$

Remarks

- Retrieve accelerated rate for strongly convex functions,
- Optimal for this class of problems [Nemirovskii and Nesterov, 1985]

Optimal Schedule

Proposition [R. and d'Aspremont, 2017]

For f convex, L-smooth satisfying (HEB_{r, μ}(S_0)), denote

$$au=1-2/r\in [0,1)$$
 and $\kappa=L/\mu^{2/r}$

Run scheduled restarts with

$$t_k = C_{\tau,\kappa} e^{\tau k}$$

After R restarts and $N = \sum_{i=1}^{R} t_k$ total iterations, we get \hat{x} s.t.

$$f(\hat{x}) - f^* = O\left(\exp(-\kappa^{-1/2}N)\right) \qquad \text{when } \tau = 0 \qquad (1)$$

$$f(\hat{x}) - f^* = O\left(N^{-2/\tau}\right) \qquad \text{when } \tau > 0 \qquad (2)$$

Technical detail

Detailed bound continuous in *τ*: for *τ* → 0, right hand side of (2) → right hand side of (1)

Parameter-free strategy

Adaptive strategy (log-scale grid search)

Given a fixed budget of iterations N, search with schedules like

$$t_k = C e^{\tau k} \tag{3}$$

- Grid on C limited by N
- Grid on C limited by continuity of the bounds in au

Parameter-free strategy

Adaptive strategy (log-scale grid search)

Given a fixed budget of iterations N, search with schedules like

$$t_k = C e^{\tau k} \tag{3}$$

- Grid on *C* limited by *N*
- Grid on C limited by continuity of the bounds in au

Proposition [R. and d'Aspremont, 2017]

For *f* convex, *L*-smooth satisfying (HEB_{r, μ}(*S*₀)), run restart schemes with schedules of the form (3) on a log₂-scale grid for a budget of *N* iterations.

Get one scheme nearly optimal up to a factor 4, costs $(\log_2 N)^2$ times more than running optimal schedule for N iterations

Restarts with sufficient gap decrease

Scheme

Assume f^* is known, run accelerated algo from x_{k-1} , stop for y_t s.t.

$$f(y_t) - f^* \le \gamma(f(x_{k-1}) - f^*)$$
 (4)

where $\gamma < 1$ and iterate the process with $x_k = y_t$

Restarts with sufficient gap decrease

Scheme

Assume f^* is known, run accelerated algo from x_{k-1} , stop for y_t s.t.

$$f(y_t) - f^* \le \gamma(f(x_{k-1}) - f^*)$$
 (4)

where $\gamma < 1$ and iterate the process with $x_k = y_t$

Proposition [R. and d'Aspremont, 2017]

For f convex, L-smooth satisfying (HEB_{r, μ}(S_0)), restarts monitoring the decrease gap (4) with $\gamma = e^{-2}$ do not worse than the optimal scheduled restart.

Remark:

Does not need any knowledge of the parameters

Gradient Descend Analysis

Gradient descend convergence rate can be written

$$f(x_{k+t}) - f^* \leq rac{L}{t} d(x_k, X^*)^2, \quad ext{for any } t, k \geq 0$$

 \rightarrow same analysis can be done under the HEB property

Gradient Descend Analysis

Gradient descend convergence rate can be written

$$f(x_{k+t}) - f^* \leq rac{L}{t} d(x_k, X^*)^2, \quad ext{for any } t, k \geq 0$$

 \rightarrow same analysis can be done under the HEB property

Proposition [R. and d'Aspremont, 2017]

For f convex, L-smooth satisfying (HEB_{r, μ}(S₀)), denote

$$au = 1 - 2/r \in [0,1)$$
 and $\kappa = L/\mu^{2/r}$

After N iterations of the gradient descend, we get \hat{x} s.t.

$$f(\hat{x}) - f^* = O\left(\exp(-\kappa N)\right) \qquad \text{when } \tau = 0$$

$$f(\hat{x}) - f^* = O\left(N^{-1/\tau}\right) \qquad \text{when } \tau > 0$$

Error Bounds

Restarts of Smooth Functions

Restart for Non-smooth Functions

Composite problems

Consider

$$\min_{x} f(x) \triangleq h(x) + g(x)$$
(5)

with h smooth convex, g prox-friendly convex.

Accelerated algorithm [Nesterov, 2013] Started at x_{k-1} , outputs after t_k iterations x_k s.t.

$$f(x_k) - f^* \leq rac{4L}{t_k^2} d(x_{k-1}, X^*)^2$$

Composite problems

Consider

$$\min_{x} f(x) \triangleq h(x) + g(x)$$

with h smooth convex, g prox-friendly convex.

Accelerated algorithm [Nesterov, 2013] Started at x_{k-1} , outputs after t_k iterations x_k s.t.

$$f(x_k) - f^* \leq \frac{4L}{t_k^2} d(x_{k-1}, X^*)^2$$

Same bound \rightarrow same analysis.

Corollary

For f defined as in (5) with h *L*-smooth, g prox-friendly, if f satisfies (HEB_{r, μ}(S_0)), then scheduled restarts and restarts on decreasing gap have same complexities as presented before.

Remark:

Captures l_{1,p} regularization

(5)

Non-smooth and Hölder smooth

Generic smoothness For f convex,

$$\|\nabla f(x) - \nabla f(y)\|_2 \le \frac{L}{s} \|x - y\|_2^s \quad \text{for all } x, y \in \text{dom } f \quad (\mathsf{S}_{\mathsf{s}, \mathsf{L}})$$

and any $\nabla f(x) \in \partial f(x)$, $\nabla f(y) \in \partial f(y)$.

- for s = 1 retrieves assumption for non-smooth cvx functions
- for 1 < s < 2 gets definition of Hölder smooth functions

Non-smooth and Hölder smooth

Generic smoothness For f convex,

$$\|\nabla f(x) - \nabla f(y)\|_2 \le \frac{L}{s} \|x - y\|_2^s \quad \text{for all } x, y \in \text{dom } f \quad (\mathsf{S}_{\mathsf{s}, \mathsf{L}})$$

and any $\nabla f(x) \in \partial f(x)$, $\nabla f(y) \in \partial f(y)$.

- for s = 1 retrieves assumption for non-smooth cvx functions
- for 1 < s < 2 gets definition of Hölder smooth functions

Combined with Hölderian error bounds Assume f satisfies $(S_{s, L})$ and $(HEB_{r, \mu}(S_0))$ then necessary

 $s \leq r$

Schedule restarts

Universal fast gradient method [Nesterov, 2015] Starting from \bar{x} , given a target accuracy ϵ , outputs after *t* iterations

$$\hat{x} = \mathcal{U}(\bar{x}, t, \epsilon)$$
 s.t. $f(\hat{x}) - f^* \le \frac{\epsilon}{2} + \frac{cL^{\frac{2}{s}}d(\bar{x}, X^*)^2}{\epsilon^{\frac{2}{s}}t^{\frac{2\rho}{s}}} \frac{\epsilon}{2}$

with $\rho = 3s/2 - 1$

Schedule restarts

Universal fast gradient method [Nesterov, 2015] Starting from \bar{x} , given a target accuracy ϵ , outputs after t iterations

$$\hat{x} = \mathcal{U}(\bar{x}, t, \epsilon)$$
 s.t. $f(\hat{x}) - f^* \leq \frac{\epsilon}{2} + \frac{cL^{\frac{2}{s}}d(\bar{x}, X^*)^2}{\epsilon^{\frac{2}{s}}t^{\frac{2\rho}{s}}} \frac{\epsilon}{2}$

with $\rho = 3s/2 - 1$

Universal scheduled restart Schedule restarts at times t_k with precision ϵ_k , i.e.

$$x_k = \mathcal{U}(x_{k-1}, t_k, \epsilon_k)$$

starting from $x_0 \in \operatorname{dom} f$ and $\epsilon_0 \geq f(x_0) - f^*$

Optimal Schedule

Proposition [R. and d'Aspremont, 2017]

For f convex, satisfying (S_s, L) and (HEB_r, $_{\mu}(S_0))$ denote

$$au = 1 - s/r \in [0,1)$$
 and $\kappa = L^{2/s}/\mu^{2/r}$

Run scheduled restarts with

$$t_k = C_{\tau,\kappa} e^{\tau k}, \quad \epsilon_k = e^{-\rho} \epsilon_{k-1}$$

After R restarts and $N = \sum_{i=1}^{R} t_k$ total iterations, we get \hat{x} s.t.

$$f(\hat{x}) - f^* = O\left(\exp(-\kappa^{-s/2\rho}N)\right) \qquad \text{when } \tau = 0$$

$$f(\hat{x}) - f^* = O\left(N^{-\rho/\tau}\right) \qquad \text{when } \tau > 0$$

Remarks

- Optimal for this class of problems [Nemirovskii and Nesterov, 1985]
- Log-scale grid-search fails to get nearly optimal rate
- Needs to stay in the initial sub-level set, which can be enforced

Restarts with sufficient gap decrease

Scheme

Assume f^* is known, run universal fast algo from x_{k-1} , with precision $\epsilon_k = \gamma(f(x_{k-1}) - f^*)$, stop when it outputs x_k s.t.

$$f(x_k) - f^* \le \epsilon_k \tag{6}$$

where $\gamma < 1$ and iterate the process

Restarts with sufficient gap decrease

Scheme

Assume f^* is known, run universal fast algo from x_{k-1} , with precision $\epsilon_k = \gamma(f(x_{k-1}) - f^*)$, stop when it outputs x_k s.t.

$$f(x_k) - f^* \le \epsilon_k \tag{6}$$

where $\gamma < 1$ and iterate the process

Proposition [R. and d'Aspremont, 2017]

For f convex, satisfying $(S_{s, L})$ and $(\text{HEB}_{r, \mu}(S_0))$, restarts monitoring the decrease gap (6) with $\gamma = e^{-\rho}$ do not worse than the optimal scheduled restart.

Remark:

- Does not need any knowledge of the parameters
- Taking $\gamma = e^{-1}$ is suboptimal by a factor at most 1.3

Smoothable objectives

Consider

$$\min_{x} f(x) \triangleq \phi(Ax) + g(x)$$

with ϕ non-smooth cvx with analytically computable Moreau envelope, g cvx prox-friendly, e.g., matrix sum-game

Smoothable objectives

Consider

$$\min_{x} f(x) \triangleq \phi(Ax) + g(x)$$

with ϕ non-smooth cvx with analytically computable Moreau envelope, g cvx prox-friendly, e.g., matrix sum-game

Smoothing and acceleration [Nesterov, 2005] Starting from \bar{x} , given a target accuracy ϵ , outputs after t iterations

$$\hat{x} = \mathcal{S}(ar{x},\epsilon,t) \quad ext{s.t.} \quad f(\hat{x}) - f^* \leq rac{\epsilon}{2} + rac{cL^2_{\psi^*,\mathcal{A}} D_h(ar{x},X^*)}{\epsilon^2 t^2} rac{\epsilon}{2},$$

Similar bound \rightarrow same analysis

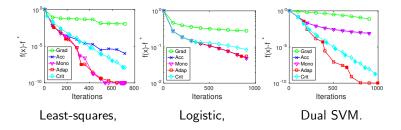
Remark

▶ Retrieves algorithm of [Gilpin et al., 2012] for zero-sum games

Numerical Illustrations

Classification on UCI dataset (n = 206 samples, d = 60 features), compare

- ► Restarts enforcing monotonicity, Mono i.e., stop and restart when f(y_{t+1}) ≥ f(y_k)
- Best scheduled restart found by grid-search Adap
- Restart with f* known Crit



Conclusion

Restarts get fastest rates for convex problem with error bounds

- Yet, needs adaptivity,
 - ▶ adaptivity to unknown μ for r = 2 [Fercoq and Qu, 2016, 2017]
 - here for smooth problems and any μ, r
 - universal restart scheme any r, s, μ, L [Renegar and Grimmer, 2018]

Extensions

► applies also to conditional gradient [Kerdreux et al., 2019]

Conclusion

Restarts get fastest rates for convex problem with error bounds

- Yet, needs adaptivity,
 - ▶ adaptivity to unknown μ for r = 2 [Fercoq and Qu, 2016, 2017]
 - here for smooth problems and any μ, r
 - universal restart scheme any r, s, μ, L [Renegar and Grimmer, 2018]

Extensions

► applies also to conditional gradient [Kerdreux et al., 2019]

Thanks ! Questions ?

Sparse Recovery Problems

Recovery objective

Recover a *s*-sparse signal $\bar{x} \in \mathbb{R}^d$ from n < d linear observations

$$b_i = a_i^T \bar{x}, \quad i \in \{1, \ldots, n\}$$

Decoding procedure

 $\begin{array}{ll} \min_{x} & \|x\|_{1} \\
\text{subject to} & Ax = b
\end{array}$

Recovery threshold

Given $A \in \mathbb{R}^{n \times d}$, denote $s_{\max}(A)$ its recovery threshold s.t. for any \bar{x} is *s*-sparse, if $s < s_{\max}(A)$, then is the unique solution of

 $\begin{array}{ll} \min_{x} & \|x\|_{1} \\ \text{subject to} & Ax = A\bar{x} \end{array}$

Recovery performance

Proposition [R., Boumal and d'Aspremont, 2019] Given $A \in \mathbb{R}^{n \times d}$ and \bar{x} , s-sparse, with $s < s_{\max}(A)$, $\|x\|_1 - \|x^*\|_1 > (1 - \sqrt{s/s_{\max}(A)}) \|x - x^*\|_1 \quad \forall x : Ax = Ax^*, x \neq x^*$ so the decoding problem satisfies (HEB₁, μ)

Rate of convergence of optimal restart scheme reads

$$\|\hat{x}\|_{1} - \|x^{*}\|_{1} = O\left(\exp\left(-\left(1 - \sqrt{s/s_{\max}(A)}\right)N\right)\right)$$

Illustration

For random observation matrix A, $s_{max}(A) \approx n/\log d$ So to recover *s*-sparse signals, needs $n \approx s \log d$ Convergence rate of optimal restart

$$\|\hat{x}\|_{1} - \|x^{*}\|_{1} = O\left(\exp\left(-\left(1 - c\sqrt{s\log d/n}\right)N\right)\right)$$

- Bolte, J., Daniilidis, A. and Lewis, A. [2007], 'The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems', *SIAM Journal on Optimization* 17(4), 1205–1223.
- Bolte, J., Nguyen, T. P., Peypouquet, J. and Suter, B. W. [2017], 'From error bounds to the complexity of first-order descent methods for convex functions', *Mathematical Programming* 165(2), 471–507.
- Diakonikolas, J. and Orecchia, L. [2019], 'The approximate duality gap technique: A unified theory of first-order methods', *SIAM Journal on Optimization* **29**(1), 660–689.
- Drusvyatskiy, D. and Lewis, A. S. [2018], 'Error bounds, quadratic growth, and linear convergence of proximal methods', *Mathematics of Operations Research* **43**(3), 919–948.
- Fercoq, O. and Qu, Z. [2016], 'Restarting accelerated gradient methods with a rough strong convexity estimate', arXiv preprint arXiv:1609.07358.
- Fercoq, O. and Qu, Z. [2017], 'Adaptive restart of accelerated

gradient methods under local quadratic growth condition', *arXiv* preprint arXiv:1709.02300.

- Gilpin, A., Pena, J. and Sandholm, T. [2012], 'First-order algorithm with ln(1/epsilon) convergence for epsilon-equilibrium in two-person zero-sum games', *Mathematical programming* 133(1-2), 279–298.
- Kerdreux, T., d'Aspremont, A. and Pokutta, S. [2019], Restarting frank-wolfe, *in* 'The 22nd International Conference on Artificial Intelligence and Statistics', pp. 1275–1283.
- Łojasiewicz, S. [1963], 'Une propriété topologique des sous-ensembles analytiques réels', *Les équations aux dérivées partielles* pp. 87–89.
- Nemirovskii, A. and Nesterov, Y. [1985], 'Optimal methods of smooth convex minimization', USSR Computational Mathematics and Mathematical Physics 25(2), 21-30.
 Nesterov, Y. [2005], 'Smooth minimization of non-smooth functions', Mathematical programming 103(1), 127-152.
 Nesterov, Y. [2013], 'Gradient methods for minimizing composite
 - functions', *Mathematical Programming* **140**(1), 125–161.

- Nesterov, Y. [2015], 'Universal gradient methods for convex optimization problems', *Mathematical Programming* **152**(1-2), 381–404.
- Nesterov, Y. E. [1983], A method for solving the convex programming problem with convergence rate o $(1/k^2)$, in 'Dokl. akad. nauk Sssr', Vol. 269, pp. 543–547.
- R., V., Boumal, N. and d'Aspremont, A. [2019], 'Complexity verus statistacal performance on sparse recovery problems', *Information and Inference : A Journal of the IMA*.
- R., V. and d'Aspremont, A. [2017], Sharpness, restart and acceleration, *in* 'Advances in Neural Information Processing Systems', pp. 1119–1129.
- Renegar, J. and Grimmer, B. [2018], 'A simple nearly-optimal restart scheme for speeding-up first order methods', *arXiv* preprint arXiv:1803.00151.
- Zhou, Z., Zhang, Q. and So, A. M.-C. [2015], I 1, p-norm regularization: error bounds and convergence rate analysis of first-order methods, *in* 'Proceedings of the 32nd International

Conference on International Conference on Machine Learning-Volume 37', JMLR. org, pp. 1501–1510.