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ABSTRACT. The Łojasiewicz inequality shows that sharpness bounds on the minimum of convex optimization
problems hold almost generically. Sharpness directly controls the performance of restart schemes, as observed
by Nemirovskii and Nesterov [1985]. The constants quantifying these sharpness bounds are of course unob-
servable, but we show that optimal restart strategies are robust, in the sense that, in some important cases,
finding the best restart scheme only requires a log scale grid search. Overall then, restart schemes generically
accelerate accelerated first-order methods.

INTRODUCTION

We study1 convex optimization problems of the form

minimize f(x) (P)

where f is a convex function defined on Rn. The complexity of these problems using first order methods is
usually controlled by smoothness assumptions on f such as Lipschitz continuity of its gradient. Additional
assumptions such as strong or uniform convexity provide respectively linear and faster polynomial rates
of convergence [Nesterov, 2013b, Juditski and Nesterov, 2014]. However, these assumptions are often too
restrictive to be applicable. Here, we make a much more generic assumption that describes the growth of
the function around its minimizers using constants µ > 0 and r ≥ 1 such that

µ

r
d(x,X∗)r ≤ f(x)− f∗, for every x ∈ K, (Loja)

where f∗ is the minimum of f , K ⊃ X∗ is a given set and d(x,X∗) = miny∈X∗ ‖x− y‖2 is the Euclidean
distance from x to the set X∗ of minimizers of f . This defines a lower bound on the function around its
minimizers and quantifies the sharpness of the minimum. We exploit this property using restart schemes on
classical convex optimization algorithms.

The sharpness assumption (Loja) is also known as a Hölderian error bound on the distance to the set of
minimizers. Hoffman [1952] first introduced error bounds to study systems of linear inequalities. Natural
extensions were then developed for convex optimization by Robinson [1975], Mangasarian [1985], Auslen-
der and Crouzeix [1988], notably through the concept of sharp minimum [Burke and Ferris, 1993, Burke
and Deng, 2002]. But the most striking result in this vein is due to Łojasiewicz [1963, 1993] who proved
that inequality (Loja) holds generically for real analytic and subanalytic functions. This result has then been
extended to non-smooth subanalytic convex functions by Bolte et al. [2007]. Overall then, condition (Loja)
essentially measures the sharpness of minimizers, and holds generically. On the other hand, this inequality
is purely implicit as r or µ are neither observed nor known a priori, and deriving adaptive schemes is thus
crucial to ensure practical relevance.

Łojasiewicz inequalities either in the form of (Loja) or as gradient dominated properties [Polyak, 1963]
led to new convergence results for composite problems and for alternating or splitting methods [Attouch
et al., 2010, Bolte et al., 2014, Frankel et al., 2015, Karimi et al., 2016]. Here we use this inequality to
produce accelerated rates for restart schemes.

Restart schemes have already been studied for strongly or uniformly convex functions in e.g. [Ne-
mirovskii and Nesterov, 1985, Nesterov, 2013a, Juditski and Nesterov, 2014, Lin and Xiao, 2014]. In

1A subset of these results appeared at the NIPS 2017 conference under the same title.
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particular, Nemirovskii and Nesterov [1985] link a “strict minimum” condition akin to (Loja) with faster
convergence rates using restart schemes which form the basis of our results, but they do not study the cost of
adaptation and do not tackle the non-smooth case. In a similar spirit, weaker versions of this strict minimum
condition were used more recently to study the performance of restart schemes in [Renegar, 2014, Freund
and Lu, 2018, Roulet et al., 2019].

The fundamental question regarding restart schemes is to define when to restart. Several heuristics have
been presented that used some criterion on the iterates to restart the accelerated algorithm and speed up
convergence [O’Donoghue and Candes, 2015, Su et al., 2014, Giselsson and Boyd, 2014]. However, they
did not theoretically establish improved complexity bounds. The robustness of restart schemes was also
studied by Fercoq and Qu [2016] for quadratic error bounds, i.e. (Loja) with r = 2, satisfied by the LASSO
problem for example. Fercoq and Qu [2019] recently extended this work to produce adaptive restarts with
theoretical guarantees of optimal performance, again for quadratic error bounds. In the same vein, Liu and
Yang [2017] presented adaptive accelerated methods given Hölderian error bounds, but their results are not
adaptive to the exponent of the error bound. The references above focus on smooth problems, but error
bounds appear also for non-smooth ones, with Gilpin et al. [2012] proving for example linear convergence
of restart schemes in bilinear matrix games where the minimum is sharp, i.e. (Loja) with r = 1. Recently
Renegar and Grimmer [2018] presented simple generic schemes inspired by an early draft of this work, and
provide adaptive schemes in all regimes (not only the smooth case).

Our contribution here is to derive optimal scheduled restart schemes for general convex optimization
problems on smooth, non-smooth or Hölder smooth functions satisfying a sharpness assumption. We then
show that for smooth functions these schemes can be made adaptive with nearly optimal complexity (up
to a squared log term) for a wide array of sharpness assumptions. We also analyze restart schemes based
on a sufficient decrease of the primal gap, when the optimal value of the problem is known. In that case,
restart schemes are shown to be optimal without requiring a log scale grid search on the parameters. Our
proofs only rely on having access to the convergence bound of an accelerated method, therefore our results
are directly extended to the non-Euclidean case with composite objective and to non-smooth functions that
can be smoothed.

1. REGULARITY ASSUMPTIONS

1.1. Smoothness. Convex optimization problems (P) are generally divided in two classes: smooth prob-
lems, for which f has Lipschitz continuous gradients, and non-smooth problems for which f is not differen-
tiable. Following Nesterov [2015], we use a unified framework that extends the definition of Hölder smooth
functions.

Definition 1.1. A function f is s-smooth for given 1 ≤ s ≤ 2 if there exists a constant L > 0 such that

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖s−12 , for all x, y ∈ dom f (Hölder)

and any subgradients ∇f(x) ∈ ∂f(x),∇f(y) ∈ ∂f(y) of f at x, y respectively. We write Hs,L the set of
s-smooth functions with parameter L.

For s = 2, we retrieve the classical definition of smoothness [Nesterov, 2013b]. For s = 1 we get a
classical assumption made in non-smooth convex optimization, i.e. that sub-gradients of the function are
bounded. For s ∈]1, 2[ we get the definition of Hölder smooth functions. We generalize our results for
functions smooth with respect to a non-Euclidean norm in Section 5.

1.2. Sharpness, Error Bounds. We study convex optimization problems whose objective satisfies a growth
condition as defined below.

Definition 1.2. A function f satisfies a Łojasiewicz growth condition on a set K if there exist constants
r ≥ 1, µ > 0, such that

µ

r
d(x,X∗)r ≤ f(x)− f∗, for every x ∈ K, (Loja)
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where f∗ is the minimum of f , d(x,X∗) = miny∈X∗ ‖x − y‖2 is the Euclidean distance from x to the set
X∗ of minimizers of f . We write Lr,µ(K) the set of functions satisfying a Łojasiewicz growth condition on
a set K with parameters r ≥ 1, µ > 0.

Condition (Loja) holds almost generically, and is notably satisfied by analytic and subanalytic functions
(see [Bolte et al., 2017] for more details). However, the proof (see e.g. Bierstone and Milman [1988,
Theorem 6.4]) uses topological arguments that are far from constructive. Hence, outside of some particular
cases (e.g. strong convexity), we cannot assume that the constants in (Loja) are known, even approximately.

Error bounds are directly related to a Łojasiewicz inequality bounding the magnitude of the gradi-
ent [Bolte et al., 2017]. These properties underlie many recent results in optimization [Attouch et al., 2010,
Frankel et al., 2015, Bolte et al., 2014]. Here, the sharpness condition in (Loja) allows us to accelerate
convex optimization algorithms using restart schemes.

Our analysis relies on the condition that (Loja) is satisfied for any output of the algorithms we restart.
By enforcing monotonicity of the objective values produced by those algorithms, this reduces to assume
that (Loja) is satisfied on sublevel sets of the objective.

1.3. Sharpness and Smoothness. Given a convex function f ∈ Hs,L, by using its Taylor expansion and
the smoothness property, we get f(x) ≤ f∗ + L

s ‖x− y‖
s
2, for x ∈ dom f and y ∈ X∗. Setting y to be the

projection of x onto X∗, this yields the following upper bound on suboptimality

f(x)− f∗ ≤ L

s
d(x,X∗)s. (1)

Now, assume moreover that f ∈ Lr,µ(K) for a given set K such that X∗ ⊂ K ⊂ dom f . Combining (1)
and (Loja) leads to

sµ

rL
≤ d(x,X∗)s−r,

for every x ∈ K \ X∗. This means that necessarily s ≤ r by taking x close enough to X∗. Moreover if
s < r, the set K must satisfy supx∈K d(x,X∗) < +∞.

For the following, we define

κ ,
L

2
s

µ
2
r

and τ , 1− s

r
∈ [0, 1) (2)

a generalized condition number for the function f and a condition number based on the ratio of powers in
inequalities (Hölder) and (Loja), respectively. Note that if r = s = 2, κ matches the classical condition
number of the function.

2. SCHEDULED RESTARTS FOR SMOOTH CONVEX PROBLEMS

In this section, we seek to solve (P) assuming that the function f is smooth, i.e. satisfies (Hölder) with
s = 2 and L > 0. Without further assumptions on f , an optimal algorithm to solve the smooth convex
optimization problem (P) is Nesterov’s accelerated gradient method [Nesterov, 1983]. Given an initial point
x0, this algorithm outputs, after t iterations, a point

x = A(x0, t) such that f(x)− f∗ ≤ cL

t2
d(x0, X

∗)2, (3)

where c > 0 is a universal constant (whose value will be allowed to vary in what follows, with c = 4 here).
The accelerated algorithm can be enforced to output solutions whose objective decays monotonically as
detailed in Appendix A. Consequently, if f satisfies a Łojasiewicz growth condition on the initial sub-level
set K = {x : f(x) ≤ f(x0)}, then it is satisfied for any point output by the algorithm.

Note that the arguments that we develop below are not specific to the algorithm of Nesterov [1983]
and would apply to any method satisfying the complexity bound (3) as shown for example in Section 5
that generalizes the results to the non-Euclidean setting. We now describe a restart scheme exploiting the
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extra regularity (Loja) to improve the computational complexity of solving problem (P) using accelerated
methods.

2.1. Scheduled restarts. Here, we schedule the number of iterations tk made by the accelerated gradient
algorithm between restarts, with tk being the number of (inner) iterations at the kth algorithm run (outer
iteration). Our scheme is described in Algorithm 1 below.

Algorithm 1 Scheduled restarts for smooth convex minimization
Inputs : x0 ∈ Rn and a sequence tk for k = 1, . . . , R.
for k = 1, . . . , R do

xk := A(xk−1, tk)

end for
Output : x̂ := xR

The analysis of this scheme and the following ones rely on two steps. We first choose schedules that
ensure linear convergence of the objective values f(xk) w.r.t. k at a given rate. We then adjust this linear
rate to minimize complexity, i.e. the total number of inner iterations. We begin with a technical lemma
which assumes linear convergence holds, and connects the growth of tk, the precision reached and the total
number of inner iterations N .

Lemma 2.1. Let xk be a sequence whose kth iterate is generated from the previous one by an algorithm
that runs tk iterations and write N =

∑R
k=1 tk the total number of iterations to output a point xR. Suppose

setting tk = Ceαk, (k = 1, . . . , R) for some C > 0 and α ≥ 0 ensures that the outer iterations satisfy

f(xk)− f∗ ≤ νe−γk, (4)

for all k ≥ 0 where ν ≥ 0 and γ ≥ 0. Then, precision at the output is given by,

f(xR)− f∗ ≤ ν exp(−γN/C), when α = 0,

and

f(xR)− f∗ ≤ ν

(αe−αC−1N + 1)
γ
α

, when α > 0.

Proof. When α = 0, N = RC, and inserting this in (4) at the last point xR yields the desired result. On
the other hand, when α > 0, we have N =

∑R
k=1 tk = Ceα e

αR−1
eα−1 , which gives R = log

(
eα−1
eαC N + 1

)
/α.

Inserting this in (4) at the last point, we get

f(xR)− f∗ ≤ ν exp

(
−γ
α

log

(
eα − 1

eαC
N + 1

))
≤ ν

(αe−αC−1N + 1)
γ
α

,

where we used ex − 1 ≥ x. This yields the second part of the result.

The last approximation in the case α > 0 simplifies the analysis that follows, without significantly
affecting the bounds. We also show in Appendix B that using integer values t̃k = dtke does not significantly
affect the bounds above.

We now analyze restart schedules tk that ensure linear convergence. Our choice of tk will heavily depend
on the ratio between r and s (with s = 2 for smooth functions here), measured by τ = 1 − s/r defined
in (2). Below, we show that if τ = 0, a constant schedule is sufficient to ensure linear convergence. When
τ > 0, we need a geometrically increasing number of iterations for each cycle.
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Proposition 2.2. Let f be a convex function and x0 ∈ dom f . Denote K = {x : f(x) ≤ f(x0)} and
assume that f ∈ H2,L ∩ Lr,µ(K). Run Algorithm 1 from x0 with iteration schedule tk = C∗κ,τe

τk, for
k = 1, . . . , R, where

C∗κ,τ , e1−τ (cκ)
1
2 (f(x0)− f∗)−

τ
2 , (5)

with κ and τ defined in (2) and c = 4e2/e here. The precision reached at the last point x̂ is given by,

f(x̂)− f∗ ≤ exp
(
−2e−1(cκ)−

1
2N
)

(f(x0)− f∗) = O
(

exp(−κ−
1
2N)

)
, when τ = 0, (6)

while,

f(x̂)− f∗ ≤ f(x0)− f∗(
τe−1(f(x0)− f∗)

τ
2 (cκ)−

1
2N + 1

) 2
τ

= O
(
N−

2
τ

)
, when τ > 0, (7)

where N =
∑R

k=1 tk is the total number of iterations.

Proof. Our strategy is to choose tk such that the objective is linearly decreasing, i.e.

f (xk)− f∗ ≤ e−γk(f(x0)− f∗), (8)

for some γ ≥ 0 depending on the choice of tk. This directly holds for k = 0 and any γ ≥ 0. Combin-
ing (Loja) with the complexity bound in (3), we get

f (xk)− f∗ ≤
cκ

t2k
(f (xk−1)− f∗)

2
r , (9)

where c = 4e2/e using that r2/r ≤ e2/e. Assuming recursively that (8) is satisfied at iteration k − 1 for a
given γ, we have

f (xk)− f∗ ≤
cκe−γ

2
r
(k−1)

t2k
(f(x0)− f∗)

2
r ,

and to ensure (8) at iteration k, we impose

cκe−γ
2
r
(k−1)

t2k
(f(x0)− f∗)

2
r ≤ e−γk(f(x0)− f∗).

Rearranging terms in this last inequality, using τ defined in (2), we get

tk ≥ e
γ(1−τ)

2 (cκ)
1
2 (f(x0)− f∗)−

τ
2 e

τγ
2
k. (10)

For a given γ ≥ 0, we can set tk = Ceαk where

C = e
γ(1−τ)

2 (cκ)
1
2 (f(x0)− f∗)−

τ
2 and α = τγ/2, (11)

and Lemma 2.1 then yields,

f(x̂)− f∗ ≤ exp
(
−γe−

γ
2 (cκ)−

1
2N
)

(f(x0)− f∗),

when τ = 0, while

f(x̂)− f∗ ≤ f(x0)− f∗(
τ
2γe

− γ
2 (cκ)−

1
2 (f(x0)− f∗)

τ
2N + 1

) 2
τ

,

when τ > 0. These bounds are minimal for γ = 2, which yields the desired result.
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When τ = 0, bound (6) matches the classical complexity bound for smooth strongly convex func-
tions [Nesterov, 2013b]. When τ > 0 on the other hand, bound (7) highlights a faster convergence rate
than accelerated gradient methods. The sharper the function (i.e. the closer r is to 2), the faster the conver-
gence. This matches the lower bounds for optimizing smooth and sharp functions functions up to constant
factors [Nemirovskii and Nesterov, 1985, Eq. 1.21]. Also, setting tk = C∗κ,τe

τk yields continuous bounds
on precision, i.e. when τ → 0, bound (7) converges to bound (6), which also shows that for τ near zero,
constant restart schemes are almost optimal.

Note that for N ≤ C∗κ,τ , the bounds (6), (7) are not informative. Precisely, the lower bounds for this
problem as presented in [Nemirovskii and Nesterov, 1985, Eq. 1.21] are not informative for small N . In
that case, the optimal rate is given by the accelerated scheme and consequently by Algorithm 1 before the
first restart.

2.2. Adaptive scheduled restart. The previous restart schedules depend on the sharpness parameters (r, µ)
in (Loja). In general of course, these values are neither observed nor known a priori. Making the restart
scheme adaptive is thus crucial to its practical performance. Fortunately, we show below that a simple
logarithmic grid search on these parameters is enough to guarantee nearly optimal performance.

We begin with the following Proposition that stems from the proof of Proposition 2.2.

Proposition 2.3. Let f be a convex function and x0 ∈ dom f . Denote K = {x : f(x) ≤ f(x0)} and
assume that f ∈ H2,L ∩ Lr,µ(K). Run Algorithm 1 from x0 with general schedules of the form{

tk = C if τ = 0,
tk = Ceαk if τ > 0.

If τ = 0 and C ≥ C∗κ,0, then

f(x̂)− f∗ ≤
( cκ
C2

)N
C

(f(x0)− f∗), (12)

while, if τ > 0 and C ≥ C(α), then

f(x̂)− f∗ ≤ f(x0)− f∗

(αe−αC−1N + 1)
2
τ

, (13)

where
C(α) , e

α(1−τ)
τ (cκ)

1
2 (f(x0)− f∗)−

τ
2 , (14)

and N =
∑R

k=1 tk is the total number of iterations.

Proof. Given general schedules of the form{
tk = C if τ = 0,
tk = Ceαk if τ > 0,

the best value of γ satisfying condition (10) for any k ≥ 0 in Proposition 2.2 is given by{
γ = log

(
C2

cκ

)
if τ = 0 and C ≥ C∗κ,0,

γ = 2α
τ if τ > 0 and C ≥ C(α).

As in Proposition 2.2, plugging these values into the bounds of Lemma 2.1 yields the desired result.

We run several schemes with a fixed number of inner iterations N to perform a log-scale grid search on
τ and κ. We define these schemes as follows.{

Si,0 : Restart Algorithm 1 with tk = Ci,
Si,j : Restart Algorithm 1 with tk = Cie

τjk, (15)

where Ci = 2i and τj = 2−j . We stop each of these schemes when the total number of its inner iterations
has exceeded N , i.e. at the smallest R such that

∑R
k=1 tk ≥ N . The size of the grid search in Ci is naturally
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bounded as we cannot restart the algorithm after more thanN total inner iterations, so i ∈ [1, . . . , blog2Nc].
We also show that when τ is smaller than 1/N , a constant schedule where tk = C performs as well as the
optimal geometrically increasing schedule where tk = C∗κ,τe

τk. This crucially means we can also choose
j ∈ [1, . . . , dlog2Ne], hence limiting the cost of the grid search.

The following proposition details the convergence of this grid-search, using the same notations as in
Proposition 2.2. As observed at the end of Section 2.1, the optimal bounds (6), (7) are only informative
after a sufficient number of iterations, which is why we analyze the adaptive scheme only for a number of
iterations N ≥ 2C∗κ,τ . To get optimal bounds in all regimes, it suffices to run an additional non-restarted
algorithm that will also capture the best rate in the case N < 2C∗κ,τ .

Proposition 2.4. Let f be a convex function and x0 ∈ dom f . Denote K = {x : f(x) ≤ f(x0)}, assume
that f ∈ H2,L ∩ Lr,µ(K) and denote by N ≥ 2C∗κ,τ a given number of iterations.

Run schemes Si,j defined in (15) to solve (P) for i ∈ [1, . . . , blog2Nc] and j ∈ [0, . . . , dlog2Ne],
stopping each time after N total inner algorithm iterations, i.e. for R such that

∑R
k=1 tk ≥ N .

If τ = 0, there exists i ∈ [1, . . . , blog2Nc] such that the scheme Si,0 achieves a precision given by

f(x̂)− f∗ ≤ exp
(
−e−1(cκ)−

1
2N
)

(f(x0)− f∗).

If τ > 0, there exist i ∈ [1, . . . , blog2Nc] and j ∈ [0, . . . , dlog2Ne] such that the scheme Si,j achieves a
precision given by

f(x̂)− f∗ ≤ f(x0)− f∗(
τe−1(cκ)−

1
2 (f(x0)− f∗)

τ
2 (N − 1)/4 + 1

) 2
τ

.

Overall, running the logarithmic grid search has a complexity (log2N)2 times higher than running N
iterations using the optimal (oracle) scheme.

Proof. Denote R the number of restarts of a scheme Sij , we have for j = 0, R = dN/Cie and for j 6= 0,

R = dlog
(
eτj−1
eτjCi

N + 1
)
/τje. Denote N ′ =

∑R
k=1 tk ≥ N the number of iterations of a scheme Si,j . We

necessarily have N ′ ≤ 2e1/2N for our choice of Ci and τj . Hence the cost of running all methods is of the
order of N(log2N)2.

If τ = 0 and N ≥ 2C∗κ,0, then i = dlog2C
∗
κ,0e ≤ blog2Nc. Therefore Si,0 has been run and bound (12)

shows then that the last iterate x̂ satisfies

f(x̂)− f∗ ≤
(
cκ

C2
i

) N
Ci

(f(x0)− f∗).

Using that C∗κ,0 ≤ Ci ≤ 2C∗κ,0,

f(x̂)− f∗ ≤

(
cκ

(C∗κ,0)
2

) N
2C∗κ,0

(f(x0)− f∗) ≤ exp
(
−e−1(cκ)−

1
2N
)

(f(x0)− f∗).

If τ ≥ 1
N and N ≥ 2C∗κ,τ , then j = d− log2 τe ≤ dlog2Ne and i = dlog2C

∗
κ,τe ≤ blog2Nc. Therefore

scheme Si,j has been run. As Ci ≥ C∗κ,τ ≥ C(τj), where C(τj) is defined in (14), bound (13) shows that
the last iterate x̂ of scheme Si,j satisfies

f(x̂)− f∗ ≤ f(x0)− f∗(
τje−τjC

−1
i N + 1

) 2
τ

.

Finally, by definition of i and j, 2τj ≥ τ and Ci ≤ 2C∗κ,τ , so

f(x̂)− f∗ ≤ f(x0)− f∗(
τe−τj (C∗κ,τ )−1N/4 + 1

) 2
τ

=
f(x0)− f∗(

τe−1(cκ)−
1
2 (f(x0)− f∗)

τ
2N/4 + 1

) 2
τ

,
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where we concluded by expanding C∗κ,τ = e1−τ (cκ)
1
2 (f(x0)− f∗)−

τ
2 and using that τ ≥ τj .

If 1
N > τ > 0 and N > 2C∗κ,τ , then i = dlog2C

∗
κ,τe ≤ blog2Nc, so scheme Si,0 has been run. As in (9),

its iterates xk satisfy, with 1− τ = 2/r,

f(xk)− f∗ ≤
cκ

C2
i

(f(xk−1)− f∗)
2
r

≤
(
cκ

C2
i

)(1−(1−τ)k)/τ
(f(x0)− f∗)(1−τ)

k

≤
(
cκ(f(x0)− f∗)−τ

C2
i

)(1−(1−τ)k)/τ
(f(x0)− f∗).

Now Ci ≥ C∗κ,τ = e1−τ (cκ)
1
2 (f(x0)− f∗)−

τ
2 and CiR ≥ N , therefore last iterate x̂ satisfies

f(x̂)− f∗ ≤ exp

(
−2(1− τ)

1− (1− τ)N/Ci

τ

)
(f(x0)− f∗).

As N ≥ Ci, since h(τ) =
(1−τ)

(
1−(1−τ)

N
Ci

)
1−(1−τ) is decreasing with τ and 1

N > τ > 0, we have

f(x̂)− f∗ ≤ exp

(
−2(N − 1)

(
1−

(
1− 1

N

)N/Ci))
(f(x0)− f∗)

≤ exp

(
−2(N − 1)

(
1− exp

(
− 1

Ci

)))
(f(x0)− f∗)

≤ exp

(
−2

N − 1

Ci

(
1− 1

2Ci

))
(f(x0)− f∗).

having used the facts that (1 + ax)
b
x ≤ exp(ab) if ax ≥ −1, b

x ≥ 0 and 1 − x + x2

2 ≥ exp(−x) when
x ≥ 0. As Ci = 2i ≥ 1, we finally get

f(x̂)− f∗ ≤ exp

(
−N − 1

Ci

)
(f(x0)− f∗)

≤ exp

(
−N − 1

2C∗κ,τ

)
(f(x0)− f∗)

≤ f(x0)− f∗(
τ(C∗κ,τ )−1(N − 1)/4 + 1

) 2
τ

≤ f(x0)− f∗(
τ(f(x0)− f∗)

τ
2 e−1(cκ)−

1
2 (N − 1)/4 + 1

) 2
τ

.

using the fact that eτ ≥ 1.

In the strongly convex case, this adaptive bound is similar to the one of [Nesterov, 2013a] to optimize
smooth strongly convex functions in the sense that we lose approximately a log factor of the condition
number of the function. However our assumptions are weaker and our bound also handles all sharpness
regimes, i.e. any exponent r ∈ [2,+∞], not just the strongly convex case. Finally the step size chosen for
the grid search was set to 2. The proof can be adapted for a generic step size h, the size of the grid may be
reduced but corresponding bounds will suffer an h2 approximation loss compared to the best schedule.
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Note that the scheduled restart schemes we present here adapt to a global sharpness hypothesis on the
sublevel set defined by the initial point and are not locally adaptive to potentially better constant µ on
smaller sublevel sets. On the other hand, restart schemes based on a primal gap, presented in Section 4, do
adapt to the local value of µ, although these schemes require having access to the primal gap.

2.3. Comparison to gradient descent. We end this section by analyzing the behavior of gradient descent
in light of the sharpness assumption in order to compare the advantage of restarted accelerated method
to plain gradient descent. While the bounds we obtain using the basic gradient method are suboptimal
compared to the ones above, the gradient algorithm having no memory will automatically adapt to the best
“restart” schedule. Given only the smoothness hypothesis, the gradient descent algorithm, presented in e.g.
[Nesterov, 2015], starts from a point x0 and outputs iterates

xt = G(x0, t) such that f(xt)− f∗ ≤
L

t
d(x0, X

∗)2.

While accelerated methods use the last two iterates to compute the next one, simple gradient descent al-
gorithms use only the last iterate, so the algorithm can be seen as (implicitly) restarting at each iteration.
Formally we use that its convergence can be bounded as, for k ≥ 1,

f(xk+t)− f∗ ≤
L

t
d(xk, X

∗)2. (16)

and we analyze it in light of the restart interpretation using the sharpness property.

Proposition 2.5. Let f be a convex function and x0 ∈ dom f . Denote K = {x : f(x) ≤ f(x0)} and
assume that f ∈ H2,L ∩ Lr,µ(K). Denote by xt = G(x0, t) the iterate sequence generated by the gradient
descent algorithm started at x0 to solve (P) and define

tk = e1−τ cκ(f(x0)− f∗)τeτk,
with κ and τ defined in (2) and c = e2/e here. The precision reached after N =

∑n
k=1 tk iterations is given

by,

f(xN )− f∗ ≤ exp
(
−e−1(cκ)−1N

)
(f(x0)− f∗) = O

(
exp(−κ−1N)

)
, when τ = 0,

while,

f(xN )− f∗ ≤ f(x0)− f∗

(τe−1(cκ)−1(f(x0)− f∗)τN + 1)
1
τ

= O
(
N−

1
τ

)
, when τ > 0.

Proof. For a given γ ≥ 0, we construct a subsequence xφ(k) of xt such that

f(xφ(k))− f∗ ≤ e−γk(f(x0)− f∗). (17)

Define xφ(0) = x0. Assume that (17) is true at iteration k − 1, then combining complexity bound (16)
and (Loja), for any t ≥ 1,

f(xφ(k−1)+t)− f∗ ≤
cκ

t
(f(xφ(k−1))− f∗)

2
r

≤ cκ

t
e−γ

2
r
(k−1)(f(x0)− f∗)

2
r .

where c = e2/e, using that r2/r ≤ e2/e. Taking tk = eγ(1−τ)cκ(f(x0)−f∗)−τeγτk and φ(k) = φ(k−1)+tk
ensures that (17) holds at iteration k. Using Lemma 2.1, we obtain at iteration N = φ(n) =

∑n
k=1 tk,

f(xN )− f∗ ≤ exp
(
−γe−γ(cκ)−1N

)
(f(x0)− f∗), if τ = 0,

and

f(xN )− f∗ ≤ f(x0)− f∗

(τγe−γ(cκ)−1(f(x0)− f∗)τN + 1)
1
τ

, if τ > 0.

These bounds are minimal for γ = 1 and the results follow.
9



We observe that restarting accelerated gradient methods reduces complexity from O(ε−τ ) to O(ε−τ/2)
compared to simple gradient descent. More general results on the convergence of (sub)gradient descent
algorithms under a Łojasiewicz inequality assumption were developed by Bolte et al. [2017].

3. UNIVERSAL SCHEDULED RESTARTS FOR CONVEX PROBLEMS

In this section, we generalize previous results to s-smooth functions as defined in Definition 1.1 to tackle
both smooth and non-smooth convex optimization problems. Without further assumptions on f , the optimal
rate of convergence for this class of functions is bounded as O(1/Nρ), where N is the total number of
iterations and

ρ = 3s/2− 1, (18)
which gives ρ = 2 for smooth functions and ρ = 1/2 for non-smooth functions. The universal fast gradient
method [Nesterov, 2015] achieves this rate by requiring only a target accuracy ε and a starting point x0. It
outputs after t iterations a point

x = U(x0, ε, t), such that f(x)− f∗ ≤ ε

2
+
cL

2
s d(x0, X

∗)2

ε
2
s t

2ρ
s

ε

2
, (19)

where c is a constant (c = 2
4s−2
s ). A simplified implementation of the universal fast gradient method that

enforces monotonicity in objective values of the outputs of the algorithm is presented in Appendix A.
We assume again that f satisfies a Łojasiewicz growth condition on its initial sublevel set. The key

difference with the smooth case described in the previous section is that here we schedule both the target
accuracy εk used by the algorithm and the number of iterations tk made at the kth run of the algorithm. Our
scheme is described in Algorithm 2.

Algorithm 2 Universal scheduled restarts for convex minimization

Inputs : x0 ∈ Rn, ε0 ≥ f(x0)− f∗, γ ≥ 0 and a sequence tk for k = 1, . . . , R.
for k = 1, . . . , R do

εk := e−γεk−1, xk := U(xk−1, εk, tk)

end for
Output : x̂ := xR

Our strategy is to choose a sequence tk that ensures

f(xk)− f∗ ≤ εk,
for the geometrically decreasing sequence εk. The overall complexity of our method will then depend on
the growth of tk as described in Lemma 2.1.

Proposition 3.1. Let f be a convex function and x0 ∈ dom f . Denote K = {x : f(x) ≤ f(x0)} and
assume that f ∈ Hs,L ∩ Lr,µ(K). Run Algorithm 2 from x0 for a given ε0 ≥ f(x0)− f∗ with

γ = ρ, tk = C∗κ,τ,ρe
τk, where C∗κ,τ,ρ , e1−τ (cκ)

s
2ρ ε
− τ
ρ

0

where ρ is defined in (18), κ and τ are defined in (2) and c = 8e2/e here. The precision reached at the last
point x̂ is given by,

f(x̂)− f∗ ≤ exp
(
−ρe−1(cκ)

− s
2ρN

)
ε0 = O

(
exp(−κ−

s
2ρN)

)
, when τ = 0,

while,

f(x̂)− f∗ ≤ ε0(
τe−1(cκ)

− s
2ρ ε

τ
ρ

0 N + 1

)− ρ
τ

= O
(
N−

ρ
τ

)
, when τ > 0,

10



where N =
∑R

k=1 tk is total number of iterations.

Proof. Our goal is to ensure that the target accuracy is reached at each restart, i.e.

f(xk)− f∗ ≤ εk. (20)

By assumption, (20) holds for k = 0. Assume that (20) is true at iteration k − 1, combining (Loja) with the
complexity bound in (19), then

f(xk)− f∗ ≤
εk
2

+
cκ(f(xk−1)− f∗)

2
r

ε
2
s
k t

2ρ
s
k

εk
2
≤ εk

2
+
cκ

t
2ρ
s
k

ε
2
r
k−1

ε
2
s
k

εk
2
, (21)

where c = 8e2/e using that r2/r ≤ e2/e. By definition εk = e−γkε0, so to ensure (20) at iteration k this
imposes

cκeγ
2
r e−γ(

2
r
− 2
s )k

t
2ρ
s
k

ε
2
r
− 2
s

0 ≤ 1.

Rearranging terms in last inequality, using τ defined in (2),

tk ≥ eγ
1−τ
ρ (cκ)

s
2ρ ε
− τ
ρ

0 e
γτ
ρ
k
.

Choosing tk = Ceαk, where

C = e
γ 1−τ

ρ (cκ)
s
2ρ ε
− τ
ρ

0 and α =
γτ

ρ
,

and using Lemma 2.1 then yields,

f(x̂)− f∗ ≤ exp(−γe−
γ
ρ (cκ)

− s
2ρN)ε0, (22)

when τ = 0, while,
f(x̂)− f∗ ≤ ε0(

γτ
ρ e
− γ
ρ (cκ)

− s
2ρ ε

τ
ρ

0 N + 1

) ρ
τ

. (23)

when τ > 0. These bounds are minimal for γ = ρ and the results follow.

This bound matches the lower bounds for optimizing smooth and sharp functions up to constant fac-
tors [Nemirovskii and Nesterov, 1985, Eq. 1.21]. Notice that, compared to Nemirovskii and Nesterov
[1985], we can tackle non-smooth convex optimization by using the universal fast gradient algorithm of
Nesterov [2015]. The rate of convergence in Proposition 3.1 is controlled by the ratio between τ and ρ. If
these are unknown, a log-scale grid search will not be able to reach the optimal rate, even if ρ is known since
we will miss the optimal rate by a constant factor, see Appendix C. If both are known, in the case of non-
smooth strongly convex functions for example, a grid-search on C recovers a nearly optimal bound. Finally
note that our bound is provided with respect to the number of iterations of the accelerated algorithms, the
corresponding bounds in terms of numbers of calls to the oracles can be found by analyzing the line-search
cost of the fast universal gradient method.

4. RESTART WITH KNOWN PRIMAL GAP

Here, we assume that we know the optimum f∗ of (P). This is the case for example in zero-sum matrix
game problems or over-parametrized least-squares without regularization. We assume again that f satisfies
the generic smoothness assumption (Hölder) and the Łojasiewicz growth condition (Loja) on its initial sub-
level set. We use again the universal gradient method U . Here however, we can stop the algorithm when
it reaches the target accuracy as we know the optimum f∗, i.e. we stop after tε inner iterations such that
x = U(x0, ε, tε) satisfies f(x)− f∗ ≤ ε, and write x , C(x0, ε) the output of this method.

11



Here we simply restart this method and decrease the target accuracy by a constant factor after each restart.
Our scheme is described in Algorithm 3. The following proposition describes its convergence.

Algorithm 3 Restart with known primal gap for convex minimization

Inputs : x0 ∈ Rn, f∗, γ ≥ 0, ε0 = f(x0)− f∗
for k = 1, . . . , R do

εk := e−γεk−1, xk := C(xk−1, εk)
end for
Output : x̂ := xR

Proposition 4.1. Let f be a convex function and x0 ∈ dom f . Denote K = {x : f(x) ≤ f(x0)} and
assume that f ∈ Hs,L ∩ Lr,µ(K). Run Algorithm 3 from x0 with parameter γ = 1. The precision reached
at the last point x̂ is given by,

f(x̂)− f∗ ≤ exp
(
−e−

1
ρ (cκ)

− s
2ρN

)
(f(x0)− f∗) = O

(
exp(−κ−

s
2ρN)

)
, when τ = 0,

while,

f(x̂)− f∗ ≤ f(x0)− f∗(
τ
ρe
− 1
ρ (cκ)

− s
2ρ (f(x0)− f∗)

τ
ρN + 1

) ρ
τ

= O
(
N−

ρ
τ

)
, when τ > 0,

where N is the total number of iterations, ρ is defined in (18), κ and τ are defined in (2) and c = 8e2/e here.
Those bounds are suboptimal to the best scheduled restarts by a factor at most e/2 ≈ 1.3.

Proof. Given γ ≥ 0, the linear convergence of our scheme is ensured by our choice of target accuracies εk.
It remains to compute the number of iterations tεk needed by the algorithm before the kth restart. Following
the proof of Proposition 3.1, for k ≥ 1 we know that the target accuracy is necessarily reached after

t̄k = e
γ 1−τ

ρ (cκ)
s
2ρ ε
− τ
ρ

0 e
γτ
ρ
k

iterations, such that tεk ≤ t̄k. So Algorithm 3 achieves linear convergence while needing less inner iterates
than the scheduled restart presented in Proposition 3.1, its convergence is therefore at least as good. For a
given γ bounds (22) and (23) follow with ε0 = f(x0) − f∗. The dependency in γ of the restart scheme in
bounds (22) and (23) is a factor

h(γ) = γe−γ/ρ

of the number of iterations, whose maximum value is reached for γ = ρ. Taking γ = 1, then leads to a
bound suboptimal by a constant factor of at most h(ρ)/h(1) ≤ e/2 ≈ 1.3 for ρ ∈ [1/2, 2], so running this
scheme with γ = 1 makes it parameter-free while producing nearly optimal complexity.

When f∗ is known, the above restart scheme is adaptive, contrary to the general non-smooth case in
Proposition 3.1. It can even adapt to the local values of L or µ as we use a criterion instead of a preset
schedule. Here, stopping using f(xk) − f∗ implicitly yields optimal choices of C and τ . Note that this
approach generalizes to algorithms for which a bound on the primal gap is available as in the Frank-Wolfe
algorithm, see [Kerdreux et al., 2019].

5. EXTENSIONS

Previous analyses of restart schemes only require bounds of the form (3) or (19). Our results extend then
readily to non-Euclidean composite settings or structured objectives as presented below.
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5.1. Composite Problems & Bregman Divergences. We extend previous schemes to more general convex
optimization problems of the form

minimize f(x) , φ(x) + g(x), (24)

where g is a simple convex function (the meaning of simple will be clarified later), φ is a convex s-smooth
function with respect to a given norm ‖ · ‖ (potentially non-Euclidean) as defined below, and φ is defined on
an open-set containing dom g, i.e. dom f = dom g.

Definition 5.1. A function φ is s-smooth for a given 1 ≤ s ≤ 2 with respect to a norm ‖ · ‖ if there exists a
constant L > 0 such that

‖∇φ(x)−∇φ(y)‖∗ ≤ L‖x− y‖s−1, for all x, y ∈ domφ

and any subgradients ∇φ(x) ∈ ∂φ(x),∇φ(y) ∈ ∂φ(y) of φ at x, y respectively, with ‖ · ‖∗ being the dual
norm of ‖ · ‖. We denote byHs,L,‖·‖ the set of s-smooth functions with respect to a norm ‖ ·‖ with parameter
L.

To exploit the smoothness of φ with respect to a generic norm, we assume that we have access to a
potential function h with dom(f) ⊂ dom(h), strongly convex with respect to the norm ‖·‖ with convexity
parameter equal to one, which means

h(y) ≥ h(x) +∇h(x)T (y − x) +
1

2
‖x− y‖2, for any x, y ∈ dom(h).

We define the Bregman divergence associated to h as, for given x, y ∈ dom(h),

Dh(y;x) = h(y)− h(x)−∇h(x)T (y − x) ≥ 1

2
‖x− y‖2.

For h(x) = 1
2‖x‖

2
2, we get Dh(y;x) = 1

2‖x − y‖
2
2 and recover the Euclidean setting. Given the problem

geometry, appropriate choices of potential functions and associated Bregman divergences can lead to sig-
nificant performance gains in high dimensional settings. We now formally state the assumption that g is
simple. Given x, y ∈ dom(f) and λ ≥ 0 we assume that

min
z

{
yT z + g(z) + λDh(z;x)

}
(25)

can be solved either in a closed form or by some fast computational procedure.
This setting includes some constrained optimization problems, where g is the indicator function of a

closed convex set, on which we can easily project the points. It also includes sparse optimization problems,
such as the LASSO, where φ(x) = ‖Ax − b‖22, with A ∈ Rm×n, b ∈ Rm, g(x) = λ‖x‖1, with λ ≥ 0 and
h(x) = 1

2‖x‖
2
2. To apply our analysis of restart schemes we need two things: an accelerated algorithm and

an appropriate notion of sharpness. In the spirit of [Bauschke et al., 2016, Lu et al., 2018], we thus introduce
the notion of relative sharpness.

Definition 5.2. A function f satisfies a relative Łojasiewicz growth condition with respect to a strictly convex
function h on a set K if there exist r ≥ 1, µ > 0 such that

µ

r
Dh(x,X∗)

r
2 ≤ f(x)− f∗ for any x ∈ K (26)

whereDh(x,X∗) = minx∗∈X∗ Dh(x∗;x) andDh is the Bregman divergence associated to h. We denote by
Lr,µ,h(K) the set of functions satisfying a relative Łojasiewicz growth condition w.r.t to h on a set K with
parameters r, µ.

If h = 1
2‖x‖

2
2 we recover the definition of the Łojasiewicz growth in the Euclidean setting (with slightly

modified constants). This assumption is as generic as our first one in (Loja) as it is satisfied if f and h are
subanalytic [Bierstone and Milman, 1988, Th. 6.4].

The algorithms are essentially the same as before, except that the distance to the set of minimizers is
replaced by the Bregman divergence to the set of minimizers. We keep the same notations for the algorithms
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as the implementations are the same as presented in Section A. Formally, if φ is smooth with respect to a
norm ‖ · ‖, the accelerated algorithm outputs after t iterations a point

x = A(x0, t) such that f(x)− f∗ ≤ cL

t2
Dh(x0, X

∗), (27)

where c = 8 here. The next Corollary generalizes Proposition 2.2.

Corollary 5.3. Let f = φ+ g be a composite convex function, x0 ∈ dom f and K = {x : f(x) ≤ f(x0)}.
Assume that φ ∈ H2,L,‖·‖ for a given norm ‖ · ‖, that f ∈ Lr,µ,h(K) for h strongly convex with respect to
‖ · ‖ and that g is simple such that problems (25) can be computed efficiently. Run Algorithm 1 from x0 with
iteration schedule tk = C∗κ,τe

τk, for k = 1, . . . , R, where

C∗κ,τ , e1−τ (cκ)
1
2 (f(x0)− f∗)−

τ
2 ,

with κ and τ defined in (2) and c = 8e2/e. The precision reached at the last point x̂ is given by,

f(x̂)− f∗ ≤ exp
(
−2e−1(cκ)−

1
2N
)

(f(x0)− f∗) = O
(

exp(−κ−
1
2N)

)
, when τ = 0,

while,

f(x̂)− f∗ ≤ f(x0)− f∗(
τe−1(f(x0)− f∗)

τ
2 (cκ)−

1
2N + 1

) 2
τ

= O
(
N−

2
τ

)
, when τ > 0,

where N =
∑R

k=1 tk is the total number of iterations.

Proof. The proof of Proposition 2.2 only relies on the bound in (9) that combines the growth condition (Loja)
with the complexity bound in (3). For the case with composite problems and Bregman divergences we
combine (26) with the bound (27), which ensures for the kth iterate of the restart scheme, f (xk) − f∗ ≤
cκ
t2k

(f (xk−1)− f∗)
2
r , with here c = 8e2/e. The rest of the proof follows as in Proposition 2.2.

For general convex functions, given a target accuracy ε and an initial point x0, the universal fast gradient
method outputs after t iterations a point

x = U(x0, ε, t) such that f(x)− f∗ ≤ ε

2
+
cL

2
sDh(x0, X

∗)

ε
2
s t

2ρ
s

ε

2
, (28)

where c = 2
5s−2
s here. The following Corollary generalizes then Proposition 3.1.

Corollary 5.4. Let f = φ+ g be a composite convex function, x0 ∈ dom f and K = {x : f(x) ≤ f(x0)}.
Assume that φ ∈ Hs,L,‖·‖ for a given norm ‖ · ‖, that f ∈ Lr,µ,h(K) for h strongly convex with respect to
‖ · ‖ and that g is simple such that problems (25) can be computed efficiently. Run Algorithm 2 from x0 for
given ε0 ≥ f(x0)− f∗,

γ = ρ, tk = C∗κ,τ,ρe
τk, where C∗κ,τ,ρ , e1−τ (cκ)

s
2ρ ε
− τ
ρ

0

where ρ is defined in (18), κ and τ are defined in (2) and c = 16e2/e. The precision reached at the last point
x̂ is given by,

f(x̂)− f∗ ≤ exp
(
−ρe−1(cκ)

− s
2ρN

)
ε0 = O

(
exp(−κ−

s
2ρN)

)
, when τ = 0,

while,

f(x̂)− f∗ ≤ ε0(
τe−1(cκ)

− s
2ρ ε

τ
ρ

0 N + 1

) ρ
τ

= O
(
N−

ρ
τ

)
, when τ > 0,

where N =
∑R

k=1 tk is total number of iterations.
14



Proof. The proof of Proposition 3.1 only relies on the bound in (21) that combines the growth condi-
tion (Loja) with the complexity bound in (19). For the case with composite problems and Bregman di-
vergences we combine (26) with the bound (28), which ensures for the kth iterate of the restart scheme,

f(xk) − f∗ ≤ εk
2 +

cκ(f(xk−1)−f∗)
2
r

ε
2
s
k t

2ρ
s
k

εk
2 with here c = 16e2/e. The rest of the proof follows as in Proposi-

tion 3.1.

The results regarding adaptive schemes and those for which f∗ is known, i.e. Propositions 2.4 and 4.1
respectively, generalize similarly under the relative growth assumption. Those results apply then to generic
`1,p regularized prediction problems where g is an `1,p norm and φ is a data-fitting term. Indeed error bounds
were proven to hold for those problems by Zhou et al. [2015]. Those error bounds are then equivalent
to quadratic growth conditions, i.e. (Loja) with r = 2 [Drusvyatskiy and Lewis, 2018]. Previous works
demonstrate then linear convergence of proximal gradient descent [Bolte et al., 2017]. Here the restart
schemes allow to get accelerated rates similar as for smooth strongly convex problems. Note that adaptive
schemes were also developed by [Fercoq and Qu, 2019] in that case.

5.2. Smoothing non-smooth problems. Our approach extends also to problems that can be smoothed, i.e.
problems of the form

minimize f(x) , φ(Ax) + g(x) (29)
where A ∈ Rm×n, g is a simple convex function and φ is a non-smooth convex function whose inf-
convolution with some smooth convex function ψ can be computed analytically, i.e. one has access for
any µ > 0 to

φµψ?(x) = sup
u∈domφ?

{
u>x− φ?(u)− µψ?(u)

}
, (30)

where for a function f we denote by f? its convex conjugate. Those problems were notably considered by
Nesterov [2005], who proved that, though they a priori suffer from their non-smoothness, they can still be
solved in O(ε) calls to an oracle by using their structure. Formally, we have access to an algorithm S that,
given an initial point x0 and a target accuracy ε, outputs after t iterations a point

x = S(x0, ε, t) such that f(x)− f∗ ≤ ε

2
+
cL2

ψ?,ADh(x,X∗)

ε2t2
ε

2
, and f(x) ≤ f(x0), (31)

where h is some potential function and Lψ?,A is a smoothing constant, see Appendix A for more details. The
scheduled restarts of this algorithm will follow the same strategy as for the fast universal gradient method
as presented in the following proposition.

Proposition 5.5. Let f(x) = φ(Ax) + g(x) be a non-smooth objective that can be smoothed using (30),
x0 ∈ dom f and K = {x : f(x) ≤ f(x0)}. Assume that we have access to a smoothing method S
ensuring (31) for a given strongly convex function h and that f ∈ Lr,µ,h(K). Given ε0 ≥ f(x0) − f∗,
restart the method S such that for k ≥ 1,

xk = S(xk−1, εk, tk), εk = e−1εk−1, tk = C̃∗κ,τe
τk, C̃∗κ,τ , e1−τ (cκ)

1
2 ε−τ0 ,

where κ and τ are defined as in (2) with s = 1 and Lψ∗,A in place of L.
The precision reached at a point x̂ = xR after R restarts is given by,

f(x̂)− f∗ ≤ exp
(
−e−1(cκ)−

1
2N
)
ε0 = O

(
exp(−κ−

1
2N)

)
, when τ = 0,

while,

f(x̂)− f∗ ≤ ε0(
τe−1(cκ)−

1
2 ετ0N + 1

) 1
τ

= O
(
N−

1
τ

)
, when τ > 0,

where N =
∑R

k=1 tk is total number of iterations.
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Proof. The smoothing method has a bound of the same form as the universal fast gradient method, i.e. we
have

x = S(x0, ε, t) such that f(x)− f∗ ≤ ε

2
+
cL

2
sDh(x0, X

∗)2

ε
2
s t

2ρ
s

ε

2
,

with here L = Lψ?,A, s = 1 and ρ = 1. The optimal restart schedule and corresponding rates follow then
from Proposition 3.1 by replacing s = 1 and ρ = 1.

As for the universal fast gradient method, a grid-search will not get optimal rates if r and so τ is unknown.
However if it is known, a grid-search will ensure optimal rates up to a constant factor. It is illustrated for
sparse recovery problems by Roulet et al. [2019].

If f∗ is known, Proposition 4.1 is modified into the following proposition. Note that the resulting restart
scheme is the one presented by Gilpin et al. [2012] for zero-sum matrix games.

Proposition 5.6. Let f(x) = φ(Ax) + g(x) be a non-smooth objective that can be smoothed using (30),
x0 ∈ dom f and K = {x : f(x) ≤ f(x0)}. Assume that f∗ is known, that we have access to a smoothing
method S ensuring (31) for a given strongly convex function h and that f ∈ Lr,µ,h(K). Denoting ε0 =
f(x0)− f∗, consider the restart scheme defined by

xk = S(xk−1, εk, tk) s.t. εk = e−1ε0 tk = argmin{t : x = S(xk−1, εk, t) satisfies f(x)− f∗ ≤ εk}.
The precision reached at a point x̂ = xR after R restarts is given by,

f(x̂)− f∗ ≤ exp
(
−e−1(cκ)−

1
2N
)
ε0 = O

(
exp(−κ−

1
2N)

)
, when τ = 0,

while,

f(x̂)− f∗ ≤ ε0(
τe−1(cκ)−

1
2 ετ0N + 1

) 1
τ

= O
(
N−

1
τ

)
, when τ > 0,

where N =
∑R

k=1 tk is total number of iterations and κ and τ are defined as in (2) with s = 1 and Lψ∗,A
in place of L.

Proof. As in Proposition 4.1, the proposed scheme with a termination criterion on the gap cannot do worse
than the optimal scheduled restart. The rate is then given by Proposition 5.5.

6. NUMERICAL RESULTS

We illustrate our results by testing our adaptive restart schemes, the adaptive scheme Adap of Section 2.2,
and the scheme with stopping criterion on the primal gap Crit in Section 4, on several problems to compare
them against simple gradient descent (Grad), accelerated gradient methods (Acc), and the restart heuristic
enforcing monotonicity (Mono) proposed by [O’Donoghue and Candes, 2015]. For Adap we plot the conver-
gence of the best method found by grid search to compare with the restart heuristic. This implicitly assumes
that the grid search is run in parallel with enough servers. For Crit we use the optimal f∗ found by another
solver. This gives an overview of its performance when such information is available. All restart schemes
were performed using the accelerated gradient with backtracking line search detailed in Appendix A, with
large dots representing restart iterations.

In Figure 1, we solve classification problems with various losses on the UCI Sonar data set [Asuncion
and Newman, 2007]. For the least square loss on sonar data set, we observe much faster convergence of the
restart schemes compared to the accelerated method. These results were already observed by O’Donoghue
and Candes [2015]. For the logistic loss, we observe that restart does not provide much improvement for
a budget of 1000 iterations. For the hinge loss, we regularized by a squared norm and optimize the dual,
which means solving a quadratic problem with box constraints. We observe here that the scheduled restart
scheme converges much faster, while restart heuristics may be activated too late. We observe similar results
for the LASSO problem. This highlights the benefits of a sharpness assumption for these last two problems.
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In general Crit ensures the theoretical accelerated rate but Adap exhibits more consistent behavior. Again,
precisely quantifying sharpness from data/problem structure is a key open problem.

To account for the grid search effort, in Figure 6, we multiplied the number of iterations made by the
Adap method by the size of the grid. This is for the LASSO problem on Sonar data set with a grid step size
of 4. This shows that the benefits of the restart schemes make the grid search effort acceptable both on paper
and in practice. More clever grid search strategies for scheduled restarts run in parallel would even reduce
this effort.

0 200 400 600 800
10

-10

10
-5

10
0

f(
x
)-

f
*

Grad

Acc

Mono

Adap

Crit

Iterations

0 500 1000
10

-2

10
-1

10
0

f(
x
)-

f
*

Grad

Acc

Mono

Adap

Crit

Iterations

0 500 1000
10

-10

10
-5

10
0

f(
x
)-

f
*

Grad

Acc

Mono

Adap

Crit

Iterations

0 500 1000
10

-10

10
-5

10
0

f(
x
)-

f
*

Grad

Acc

Mono

Adap

Crit

Iterations

FIGURE 1. Sonar data set. From left to right: least square loss, logistic loss, dual SVM
problem and LASSO. We use adaptive restarts (Adap), gradient descent (Grad), accelerated
gradient (Acc) and restart heuristic enforcing monotonicity (Mono). Large dots represent
the restart iterations. Regularization parameters for dual SVM and LASSO were set to one.
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FIGURE 2. Comparison of the methods for the LASSO problem on Sonar dataset where
number of iterations of the Adaptive method is multiplied by the size of the grid. Grid
search step size is set to 4.
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APPENDIX A. ALGORITHMS & COMPLEXITY BOUNDS

We present here the algorithms that we restart. In particular we present a simplified version of the univer-
sal fast-gradient method of Nesterov [2015] and shows how we can enforce monotonicity of the objective
values, while keeping the optimal rate. The classical accelerated algorithm for smooth convex function is
then derived as a special case of the universal method.

In both cases the smoothness constant do not need to be known in advance. A line-search is provided
whose complexity can be bounded as done in [Nesterov, 2015]. In practice when restarting the algorithm
we use the last smoothness constant provided by the algorithm.

A.1. Problem formulation. We focus on composite optimization problems of the form

minimize f(x) = φ(x) + g(x) (32)

where φ, g are proper lower semi-continuous convex functions on Rn and φ is defined on an open-set con-
taining dom g, i.e. dom f = dom g. We denote ‖ · ‖ a given norm on Rn and ‖ · ‖∗ the dual norm of
‖ · ‖.

We assume that φ is s-smooth with respect to ‖ · ‖ for a given s ∈ [1, 2], i.e. that there exists L > 0 such
that

‖∇φ(x)−∇φ(y)‖∗ ≤ L‖x− y‖s−1 (33)

for all x, y ∈ dom f and any ∇φ(x) ∈ ∂φ(x),∇φ(y) ∈ ∂φ(y). We assume that we have access to a
function h, differentiable on its domain domh ⊇ dom f , strongly convex with respect to the norm ‖ · ‖
with convexity parameter equal to one, i.e.

h(y) ≥ h(x) +∇h(x)T (y − x) +
1

2
‖x− y‖2, for any x, y ∈ domh.

We define the Bregman divergence associated to h as, for given x, y ∈ domh,

Dh(y;x) = h(y)− h(x)−∇h(x)T (y − x) ≥ 1

2
‖x− y‖2. (34)

Finally we assume that, for any x, y ∈ dom f and λ ≥ 0 we can solve

min
z
yT z + g(z) + λDh(z;x) (35)

either in a closed form or by some cheap computational procedure. In the following, we denote for any
x, y ∈ dom f ,

`f (x; y) = φ(y) +∇φ(y)>(x− y) + g(x)

where∇φ(y) ∈ ∂φ(y) is any sub-gradient of φ at y. This partial linearization of the objective is convex and
satisfies by convexity of φ,

`f (x; y) ≤ f(x) (36)
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A.2. Universal fast gradient method. Our simplified version of the Universal Fast Gradient method is
presented in Algorithm 4. Proposition A.1 shows the convergence of Algorithm 4. Proposition A.2 ensures
that the line-searches terminate. The total number of oracle calls can be bounded as done by Nesterov
[2015], using a termination criterion, we only give the complexity in terms of iterations of the algorithm.
Monotonicity is enforced by simply taking the best of the new and old iterate at each iteration.

Proposition A.1. Consider problem (32) where φ satisfies (33) with parameters (s, L). Algorithm 4, started
at an initial point x0 for a target accuracy ε and an initial estimate L0, outputs after t iterations a point xt
such that

f(xt)− f∗ ≤
ε

2
+

2
5s−2
s L

2
sDh(x0, X

∗)

ε
2
s t

2ρ
s

ε

2
and f(xt) ≤ f(x0),

where Dh(x,X∗) = minx∗∈X∗ Dh(x∗;x) with X∗ = argminx f(x).

Proof. Monotonicity of the objective values is ensured by (43). We fix in the following x ∈ dom f .
Consider the k th iteration of Algorithm 4 for k ≥ 1. We have

f(xk)
(43)
≤ f(x̃k)

(42)
≤ `f (x̃k; yk−1) +

Lk
2
‖x̃k − yk−1‖2 +

εθk
2

(i)

≤ (1− θk)`f (xk−1; yk−1) + θk`f (zk; yk−1) +
Lkθ

2
k

2
‖zk − zk−1‖2 +

εθk
2

(34)
≤ (1− θk)`f (xk−1; yk−1) + θk (`f (zk; yk−1) + LkθkDh(zk; zk−1)) +

εθk
2

(45)
≤ (1− θk)`f (xk−1; yk−1)+θk (`f (x; yk−1)+Lkθk[Dh(x; zk−1)−Dh(x; zk)]) +

εθk
2

(36)
≤ (1− θk)f(xk−1) + θkf(x) + Lkθ

2
k[Dh(x; zk−1)−Dh(x; zk)] +

εθk
2

where in (i) we used that x̃k = (1 − θk)xk−1 + θkzk, the convexity of `f (·; yk−1) and x̃k − yk−1 =
θk(zk − zk−1). Subtracting f(x) on both sides and dividing by Lkθ2k, we get

1

Lkθ
2
k

(f(xk)− f(x)) ≤ 1− θk
Lkθ

2
k

(f(xk−1)− f(x)) +Dh(x; zk−1)−Dh(x; zk) +
ε

2Lkθk

If k = 1, we have, using the initialization θ1 = 1, z0 = x0,
1

L1θ21
(f(x1)− f(x)) ≤ Dh(x;x0)−Dh(x; z1) +

ε

2L1θ1
(37)

Otherwise we have using the definition of θk in (41),
1

Lkθ
2
k

(f(xk)− f(x)) ≤ 1

Lk−1θ
2
k−1

(f(xk−1)− f(x)) +Dh(x; zk−1)−Dh(x; zk) +
ε

2Lkθk
(38)

Using inequality (38) recursively from k to 2 and inequality (37) for k = 1 we get

1

Lkθ
2
k

(f(xk)− f(x)) ≤ Dh(x;x0)−Dh(x; zk+1) +

k∑
j=1

ε

2Ljθj

(47)
= Dh(x;x0)−Dh(x; zk+1) +

ε

2Lkθ
2
k

Finally a bound on Lkθ2k can be found by combining Proposition A.2 and Proposition A.1 such that Lkθ2k ≤
2
5s−2
s L

2
s

ε
2
s k

3s−2
s

ε
2 and we get, denoting ρ = 3s−2

2 ,

f(xk)− f(x) ≤ ε

2
+

2
5s−2
s L

2
sDh(x;x0)

ε
2
s k

2ρ
s

ε

2
. (39)

Taking x ∈ argminx∈X∗ Dh(x;x0) concludes the proof.
21



Algorithm 4 Simplified Universal Fast Gradient Method x = U(x0, t, ε)

1: Problem oracles: Convex functions φ, g, first-order oracles (x, y, λ) → argminz y
T z + g(z) +

λDh(z;x) and x→ ∇φ(x) with∇φ(x) ∈ ∂φ(x)
2: Inputs: Initial point x0, number of iterations t, target accuracy ε, smoothness estimate L0

3: Initialize: z0 = x0, θ1 = 1
4: for k = 1, . . . , t do
5: Initialize line-search by L̂k = Lk−1/2
6: repeat
7: if k > 1 then
8: Compute θk ≥ 0 s.t.

1− θk
L̂kθ

2
k

=
1

Lk−1θ
2
k−1

(41)

9: end if
10: Compute

yk−1 = (1− θk)xk−1 + θkzk−1

zk = argmin
z

`f (z; yk−1) + L̂kθkDh(z; zk−1)

x̃k = (1− θk)xk−1 + θkzk

11: if f(x̃k) > `f (x̃k; yk−1) + L̂k
2 ‖x̃k − yk−1‖

2 + θkε
2 then L̂k ← 2L̂k end if

12: until

f(x̃k) ≤ `f (x̃k; yk−1) +
L̂k
2
‖x̃k − yk−1‖2 +

θkε

2
(42)

13: Pick any xk such that
f(xk) ≤ min(f(x̃k), f(xk−1)) (43)

14: Update Lk = L̂k
15: end for
16: Output: xt

Proposition A.2. Consider problem (32) where φ satisfies (33) with parameters (s, L). The line-searches
of Algorithm 4 terminate with

Lk ≤ 2ε
s−2
s L

2
s θ

s−2
s

k

Proof. Lemma A.4 ensures that the line-search for x1 stops for L̂1 ≥ ε
s−2
s L

2
s . Therefore we have L1 ≤

2ε
s−2
s L

2
s . For k ≥ 2, during the line-search procedure, the parameter θk reads, denoting a = θ2k−1Lk−1/L̂k,

θk(L̂k) = −a+
√
a2+4a
2 = 2

1+
√

1+4/a
= 2

1+
√

1+4L̂k/(θ
2
k−1Lk−1)

. Using again Lemma A.4, the stopping

criterion (42) is then ensured if there exists L̂k such that

L̂k ≥
(
θk(L̂k)ε

) s−2
s
L

2
s = (2ε)

s−2
s L

2
s

(
1 +

√
1 + 4L̂k/(θ

2
k−1Lk−1)

) 2−s
s

, (40)

Denote c : x → x − α(1 +
√

1 + βx)γ for α > 0, β > 0, 0 ≤ γ ≤ 1. We have limx→+∞ c(x) = +∞.
Therefore there exists L̂k > 0 satisfying (40). Moreover the line-search terminates withLk ≤ 2 (θkε)

s−2
s L

2
s

as otherwise, Lk/2 > (θk(Lk)ε)
s−2
s L

2
s ≥ (θk(Lk/2)ε)

s−2
s L

2
s , and the line-search would have stopped

before.
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A.3. Accelerated algorithm. The accelerated algorithm is obtained as a special case of the universal fast
gradient algorithm for s = 2 and a choice of ε = 0, i.e., A(x0, t) = U(x0, t, 0). Its rate follows from the
one given by the universal fast gradient method as recalled below.

Corollary A.3. Consider problem (32) where φ satisfies (33) with parameters (2, L). Algorithm 4 with
ε = 0, started at an initial point x0 with an initial estimate L0, outputs after t iterations a point xt such that

f(xt)− f∗ ≤
8L

t2
Dh(x0, X

∗) and f(xt) ≤ f(x0),

where Dh(x,X∗) = minx∗∈X∗ Dh(x∗;x) with X∗ = argminx f(x).

A.4. Lemmas for proving convergence.

Lemma A.4 ([Nesterov, 2015, Lemma 2]). Let φ satisfying (33). Then for any δ > 0 and L̂ ≥
(
2−s
s

1
δ

) 2−s
s L

2
s ,

or a fortiori any L̂ ≥ δ
s−2
s L

2
s , we have, for any x, y ∈ domφ and ∇φ(x) ∈ ∂φ(x),

φ(y) ≤ φ(x) +∇φ(x)>(y − x) +
L̂

2
‖x− y‖2 +

δ

2
. (44)

Lemma A.5 ([Tseng, 2008, Property 1]). For any proper l.s.c. convex function ψ, and any z ∈ domh,
denote z+ = argminx{ψ(x) +Dh(x; z)}. Then for any x ∈ domh,

ψ(x) +Dh(x; z) ≥ ψ(z+) +Dh(z+; z) +Dh(x; z+). (45)

Lemma A.6. Consider two sequences (Lk)k≥1, (θk)k≥1 initialized by L1 > 0, θ1 = 1 and satisfying

for k ≥ 1 Lk ≤
α

θβk
, and, for k ≥ 2,

1− θk
Lkθ

2
k

=
1

Lk−1θ
2
k−1

, (46)

for some α ≥ 0, β ∈ [0, 1], with θk ≥ 0. Then for any k ≥ 1,

1

Lkθ
2
k

=
k∑
j=1

1

Ljθj
and Lkθ

2
k ≤

α22−β

k2−β
(47)

Proof. The first property of (47) is true for k = 1 since θ1 = 1. The definition of θk for k ≥ 2 reads then
1

Lkθ
2
k

= 1
Lk−1θ

2
k−1

+ 1
Lkθk

which shows the first property (47) by induction.

For k ≥ 1, denote ak = 1
Lkθk

and Ak =
∑k

j=1 aj , such that Ak = 1
Lkθ

2
k

= Lka
2
k. We have from (46),

L1−β
k ≤ αaβk . Therefore A1−β

k ≤ αa2−βk which gives A
1−β
2−β
k ≤ α

1
2−β ak. Denote γ = 1

2−β and A0 = 0.
Since γ ≥ 1/2 and Ak ≥ Ak−1, we have for any k ≥ 1,

Aγk −A
γ
k−1 ≥

Ak −Ak−1
A1−γ
k +A1−γ

k−1
≥ Ak −Ak−1

2A1−γ
k

≥ 1

2α
1

2−β
.

Therefore we conclude that Ak ≥ k
1
γ

2
1
γ α

= k2−β

22−βα
.

A.5. Smoothing non-smooth problems. We present here the smoothing algorithm used in Section 5. We
recall the problem

minimize f(x) , φ(Ax) + g(x) (48)
where A ∈ Rm×n, g is a simple convex function and φ is a non-smooth convex function whose inf-
convolution with some smooth convex function ψ can be computed analytically, i.e. one has access for
any µ > 0 to

φµψ?(x) = inf
y

{
φ(y) + µψ

(
x− y
µ

)}
= sup

u

{
u>x− φ?(u)− µψ?(u)

}
,
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where for a function f we denote by f? its convex conjugate, see [Beck and Teboulle, 2012] for a detailed
exposition. For ψ? 1-strongly convex w.r.t. a given norm ‖ · ‖β (i.e. ψ 1-smooth w.rt. ‖ · ‖∗β), the function
φµψ? is 1/µ smooth w.r.t. the norm ‖ · ‖∗β . Moreover it approximates φ as (see e.g. [Pillutla et al., 2018,
Proposition 41])

µ inf
u∈domφ?

ψ?(u) ≤ φ(x)− φµψ?(x) ≤ µ sup
u∈domφ?

ψ?(u) for any x ∈ domφ. (49)

The smoothed objective is a composite objective as in (32), i.e.,

fµψ?(x) = φµψ?(Ax) + g(x) (50)

where, denoting ‖A‖α,β = sup‖x‖α≤1,‖u‖β≤1 u
>Ax, we have that x → φµψ?(Ax) is ‖A‖2α,β/µ smooth

w.r.t. a norm ‖ · ‖α (see e.g. [Pillutla et al., 2018, Lemma 42]). We can then apply the accelerated algorithm
on (50) with a potential function h strongly convex w.r.t. the norm ‖ · ‖α, assuming that g is simple such
that we have access to oracles of the form (25). Precisely, given an initial point x0 and a target accuracy
ε, by applying the accelerated algorithm on (50) with µ = ε/(2D), where D = supu∈domφ∗ ψ

∗(u) −
infu∈domφ∗ ψ

∗(u), we get after t iterations a point x̃ such that for x∗ ∈ argmin f ,

f(x̃)− f∗
(49)
≤ fµψ?(x̃)− fµψ?(x∗) +Dµ

(i)

≤ ε

2
+

16D‖A‖2α,β
εt2

Dh(x∗;x0).

where in (i) we use the definition of µ and the convergence bound (39) of the accelerated algorithm (ε = 0)
applied on x = x∗. We denote then x = S(x0, ε, t) any point such that f(x) ≤ min{f(x̃), f(x0)} such that
it satisfies both the rate above and belongs to the initial sub-level set. The bound presented in equation (31)
is obtained by taking x∗ ∈ argminx∈X∗ Dh(x;x0) and defining c = 32 and Lψ∗,A =

√
D‖A‖α,β .

APPENDIX B. ROUNDING ISSUES

We presented convergence bounds for real sequences of iterate counts (tk)
∞
k=1 but in practice these are

integer sequences. The following Lemma details the convergence of our schemes for an approximate choice
t̃k = dtke.

Lemma B.1. Let xk be a sequence whose kth iterate is generated from previous one by an algorithm that
needs tk iterations and denote N =

∑R
k=1 tk the total number of iterations to output a point x̂ = xR.

Suppose setting tk = dCeαke, k = 1, . . . , R for some C > 0 and α ≥ 0 ensures that objective values
f(xk) converge linearly, i.e.

f (xk)− f∗ ≤ νe−γk, (51)

for all k ≥ 0 with ν ≥ 0 and γ ≥ 0. Then precision at the output is given by,

f(x̂)− f∗ ≤ ν exp(−γN/(C + 1)), when α = 0,

and, denoting N ′ = N − log((eα−1)e−αC−1N+1)
α ,

f(x̂)− f∗ ≤ ν

(αe−αC−1N ′ + 1)
γ
α

, when α > 0.

Proof. At the Rth point generated, N =
∑R

k=1 tk. If tk = dCe, define ε = dCe − C such that 0 ≤ ε < 1.
Then N = R(C + ε), injecting it in (51) at the Rth point,

f(x̂)− f∗ ≤ νe−γ
N
C+ε ≤ νe−γ

N
C+1 .
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Now, if tk = dCeαke, define εk = dCeαke−Ceαk, such that 0 ≤ εk < 1. On one handN ≥
∑R

k=1Ce
αk,

such that R ≤ log((eα−1)e−αC−1N+1)
α . On the other hand,

N =

R∑
k=1

tk =
Ceα

eα − 1
(eαR − 1) +

R∑
k=1

εk ≤ Ceα

eα − 1
(eαR − 1) +R

≤ Ceα

eα − 1
(eαR − 1) +

log
(
(eα − 1)e−αC−1N + 1

)
α

,

such that R ≥ log(αe−αC−1N ′+1)
α . Injecting it in (51) at the Rth point the result follows.

APPENDIX C. GRID-SEARCH FOR UNIVERSAL RESTART SCHEMES

We briefly explain why a grid-search on the parameters for the general case s ∈ [1, 2] does not provide
near-optimal bounds. Consider general restart schemes as presented in Algorithm 2 for a function f ∈
Hs,L ∩ Lr,µ(K) with K the initial sublevel set of f at a given x0. Assume that the decreasing factor is γ
and the schedules have the form tk = Ceαk such that

tk ≥ eγ
1−τ
ρ (cκ)

s
2ρ ε
− τ
ρ

0 e
γτ
ρ
k
,

which is C ≥ e
γ 1−τ

ρ (cκ)
s
2ρ ε
− τ
ρ

0 and α ≥ γτ
ρ . Consider the case τ > 0. Then following the proof of

Proposition 3.1, we get that f(xR)− f∗ ≤ γkε0 and applying Lemma 2.1 we obtain a convergence rate

f(xR)− f∗ ≤ ε0

(αe−αC−1N + 1)
γ
α

,

where N is the total number of iterations. For this rate to be optimal or nearly optimal we need γ
α = ρ

τ .
Any grid search on this ratio will then suffer from a constant factor such that we won’t get a rate of the form
N−

ρ
τ except if we know r and s which gives us ρ/τ .
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