An Elementary Approach to Convergence Guarantees
of Optimization Algorithms for Deep Networks

Vincent Roulet, Zaid Harchaoui
Department of Statistics, University of Washington, Seattle, USA

Abstract

We present an approach to obtain convergence guarantees
of optimization algorithms for deep networks based on el-
ementary arguments and computations. The convergence
analysis revolves around the analytical and computational
structures of optimization oracles central to the imple-
mentation of deep networks in machine learning software.
We provide a systematic way to compute the smooth-
ness constants that govern the convergence behavior of
first-order optimization algorithms used to train deep net-
works. A diverse set of example components and archi-
tectures arising in modern deep networks intersperse the
exposition to illustrate the approach.

1 Introduction

Deep networks have achieved remarkable performance in
several application domains such as computer vision, nat-
ural language processing and genomics (Krizhevsky et al.
2012, Pennington et al. 2014, Duvenaud et al. 2015). A
deep network can be framed as a chain of composition
of modules, where each module is typically the composi-
tion of a non-linear activation function and an affine trans-
formation. The last module in the chain is usually task-
specific and can be expressed either in analytical form as
in supervised classification or as the solution of an opti-
mization problem in dimension reduction or clustering.
The optimization problem arising when training a deep
network is often framed as a non-convex optimization
problem, dismissing the structure of the objective yet cen-
tral to the software implementation. Indeed optimization
algorithms used to train deep networks proceed by mak-
ing calls to first-order (or second-order) oracles relying on

dynamic programming such as gradient back-propagation
(Werbos 1994, Rumelhart et al. 1985, Lecun 1988). See
also (Duda et al. 2012, Anthony & Bartlett 2009, Shalev-
Shwartz & Ben-David 2014, Goodfellow et al. 2016) for
an exposition and (Paszke et al. 2017, Abadi et al. 2015)
for an implementation of gradient back-propagation for
deep networks. We highlight here the elementary yet im-
portant fact that the chain-compositional structure of the
objective naturally emerges through the smoothness con-
stants governing the convergence guarantee of a gradient-
based optimization algorithm. This provides a reference
frame to relate the network topology and the convergence
rate through the smoothness constants. This also brings to
light the benefit of specific modules popular among prac-
titioners to improve the convergence.

In Sec. 2, we define the parameterized input-output
map implemented by a deep network as a chain-
composition of modules and write the corresponding op-
timization objective consisting in learning the parame-
ters of this map. In Sec. 3, we detail the implementa-
tion of first-order and second-order oracles by dynamic
programming; the classical gradient back-propagation al-
gorithm is recovered as a canonical example. Gauss-
Newton steps can also be simply stated in terms of calls
to a dynamic-programming-type procedure implemented
in modern machine learning software libraries. In Sec. 4,
we present the computation of the smoothness constants
of several types of modules arising in deep networks and
the resulting convergence guarantees for gradient descent.
Finally, in Sec. 5, we present the application of the ap-
proach to derive the smoothness constants for the VGG
architecture (Simonyan & Zisserman 2015). All proofs
and notations are provided in the long version (Roulet &
Harchaoui 2019).

Linear operation -

matrix product,
convolution, ...

Non-linear activation -

RelLU, sigmoid,...

Output zt

Figure 1: Deep network compositional structure.

2 Problem formulation

2.1 Deep network structure

A feed-forward deep network of depth 7 can be described
as a transformation of an input z into an output z, through
the composition of 7 blocks, called layers, illustrated in
Fig. 1. Each layer is defined by a set of parameters v;.
For simple layers (see Sec. 2.3 for a formal and general
definition), these parameters act on the input of the layer
z;—1 through a linear operation b; followed by a non-linear
operation a;, called an activation function. Formally, in
that case, the ™" layer can be described as a function of its
parameters v; and a given input z;_; that outputs z; as

21 = (v, z1-1) = ar(by(vr, 21-1)),

where b; is a linear function of the inputs z;_; and an
affine function of the parameters v; and q; is a non-linear
operation.

Learning a deep network consists in minimizing
w.r.t. its parameters an objective involving n examples

M ... 2™ ¢ Re Formally, the problem is written

min FEWD MY Lo,y
V1yeeeyUr
subject to zl(i) = ¢;(vy, zl(i)l) forl=1,...,7
2 =a®, (1)

where v; € R is the set of parameters at layer [whose
dimension p; can vary among layers, 7 is a regularization
on the parameters of the network and the constraints in (1)
are forany i € {1,...,n}.

We are interested in the influence of the structure of
the problem, i.e., the chain of compositions, on the op-
timization complexity of the problem. This leads to the
definition of a chain of layers as follows.

Definition 2.1. A function) : RP — RY is a chain of 7
layers, with k < p, if it is defined by an input x € R% and
T functions ¢; : R x R%-1 — R% forl =1,...,7 such
that for (v1;...;v,)! € RP with v, € R, the output of 1

is given by
QZ}(U}) = ZT)
with z21=¢i(v,z1—-1) forl=1,...,7 2)
20 = X.

By considering the concatenation of the parameters
w = (v1;...;v;) and the concatenation of the trans-
formations of each input as a single transformation, i.e.,
P(w) = (YD (w),..., v (w)) where 1) is the chain
of layers defined by the input (), the objective in (1) can
be written as

min
weRP

f@(w)) +r(w), ©)

where 1) : RP — R? is a chain of k& layersz, r:RP — Ris
typically a decomposable differentiable function such as
r(w) = >_; ||lu]|3 and we present examples of learning
objectives below. Assumptions on differentiability and
smoothness of the objective are detailed in Sec. 4.

'We denote by semi-columns the concatenation of variables.

2Note that if k is the number of classes, i.e., the output of each chain
(9, the output dimension of the chain 1) scales with the number of
samples as ¢ = nk.

2.2 Objectives

Supervised learning. For supervised learning, the ob-
jective can be decomposed as

1 n

f@w) = =3 fO W0 w),

“

where f(*) are losses on the labels predicted by the chain
of layers, i.e., f@ (7)) = L(5®,y®) where y@ is the
label of the input z(*) of the chain of layers ¥(*) with out-
put ") and £ is a given loss.

Unsupervised learning. In unsupervised learning tasks
the labels are unknown. The objective itself is defined
through a minimization problem rather than through an
explicit loss function. For example, a convex clustering
objective is written

n

1 7 7
S 5l — ()3

ST

i<j

min
Y1,.-,Yn ERY

f(h(w)) =

where (") (w) are n chains defined by inputs 2(?), see
(Hocking et al. 2011) for the linear formulation. We con-
sider in (Roulet & Harchaoui 2019) different clustering
objectives. Note that the classical ones (k-means, spectral
clustering) are inherently non-smooth as they are defined
as the minimization of a linear objective under constraints.

Auto-encoders. An auto-encoder seeks to reconstruct
inputs 2(*) € R%. The structure can be described as chain
of layers ¥(*) (each fed with corresponding z(")) as de-
fined in Def. 2.1 with the particularity that 69 = §, = d.
The objective can then be written in the present frame-
work as

F(w) =" [l2® — @O (w)|3.
=1

2.3 Layers

We describe in more detail deep network layers. In gen-
eral, each layer is described by (i) a normalization of the

input, (ii) a linear operation, (iii) a non-linear operation,
(iv) a pooling operation, i.e., a layer can be written as

bi(vi, 21-1) =™ (az(bl(vl,cl(zz—l)))) S

where ¢; : R%-1 — R%-1 is a normalization operation,

(6)

with bl1 : RPt x R%-1 —s R™ bilinear, b? : Rt — R™
linear, a; : R™ — R™ is an activation function and 7; :
R™ — R% is a pooling operation. We present common
examples of such functions, a list is detailed in (Roulet &
Harchaoui 2019) with the smoothness properties of each
function.

bi(vi, zi-1) = b (v, z1-1) + b (vy)

Linear operations. A fully connected layer taking a
batch of m inputs of dimension d is written

Z=V"Z+°1] (7

where Z € R¥*™ ig the batch of inputs and V' € Rdxd
v9 € R? define an affine transformation. We dropped
the dependency w.r.t. the layer [and denoted by - the
quantities characterizing the output. In the vocabulary of

Def. 2.1, we have
e z1_1=Vec(Z),d,_1=md, zl:Vec(Z),él:ch,
o vy = Vec((VT,0")7T), py = d(d + 1),
e bl (v, 2-1) = Vec(VTZ),b)(v;) = Vec(v°1,)

Note that the dimension of the parameters scales roughly
as the square of the dimension of the inputs. A matrix
product can easily be translated into a bilinear operation
on the vectorized matrices, see (Roulet & Harchaoui
2019).

A convolutional layer convolves a batch of m inputs
(images or signals) of dimension d stacked as Z =
(21, -, 2m) € R*™ with n/ affine filters of size s/ de-
fined by weights V' = (v1,...,v,5) € Rs"*n’ and offset
00 = (vf,...,00) € R"’ through n? patches. The k
output of the convolution of the i input by the ;" filter
reads

®)

f .
where II, € RS *%-1 extracts a patch of size st
at a given position. The output Z = (Z1,...,%,)

- T 0
Zigk = U 12 + v;

is then given by the concatenation of each input, i.e.,
Zi k4nr(j—1)) = Zi,j,k- In the following we denote by

V*np Z

any convolution of m inputs by n/ filters through n”
number of patches (the convolution itself may depend on
stride and padding options characterized by the number of
patches n?, yet only this number will affect the complex-
ities). The corresponding linear operations are obtained
using z;_; = Vec(Z) € R™4, z; = Vec(Z) € R™ where
d = nPnf and v, = Vec((VT,10)T) € RGs +n”,

Activation functions. We consider element-wise acti-
vation functions a : R® — R? such that for a given
z2=(21,--.,25) € RI,

a(z) = (a(z1), ..., a(zs)) 9)

for a given scalar function « such as a(z) = max(z,0)
for the Rectified Linear Unit (ReLU) or the sigmoid func-
tion a(z) = (1 + exp(—z))~!. To account for non-
differentiable layers, we consider the smoothing coun-
terpart using inf-convolution, see (Roulet & Harchaoui
2019).

Normalization functions. We consider either the case
where the inputs are not normalized, i.e., ¢(z) = z or
the case where the inputs are normalized through batch-
normalization, i.e., batch of input Z € Rdxm outputs Z
defined by

5 Zij — i
(Z)is = 7\/% (10)
]. Ui 2]- “ 2
where = Z Zij, o; = o Z(Zij - i),
j=1 j=1

with € > 0, such that ¢(z) = Vec(Z) for z = Vec(Z).

Pooling functions. A pooling layer reduces the dimen-
sion of the output. For example, an average pooling con-
volves an input image with a mean filter. Formally, for
a batch of inputs Z € R?*™, the average pooling with
a patch size s/ for inputs with n/ channels through n”
patches outputs

Z =041 /s %pr Z (11)

where the convolution *,» induces a reduction of dimen-
sion, i.e., the number of patches is n? < d/nf.

3 Oracle arithmetic complexity

For each class of optimization algorithm considered (gra-
dient descent, Gauss-Newton, Newton), we define the ap-
propriate optimization oracle called at each step of the op-
timization algorithm which can be efficiently computed
through a dynamic programming procedure akin to the
classical automatic differentiation procedure. All opti-
mization oracles can be formally defined as the minimiza-
tion of the objective with an additional proximal term.

Oracle reformulations. For a function f, we denote

Uy 2)=f(2)+Vf(2) (y—2)

a5 (y; x)=f(ﬂf)+Vf(ﬂf)T(y—$)+%(y—ﬂf)TV2f($)(y—$)

the linear and quadratic approximations respectively of f
around x. On a point w;, given a step-size -,
(1) a gradient step is defined as

w1 = argmin £ oy (w; wy) + £ (w; wy)
weERP

+ ﬂllwfwtu%, (12)

(i1) a (regularized) Gauss-Newton is defined as

Wi41 = arg f;lin Qf(fw(U/; wt)§ 1/’(“&)) + q’l’(w; wt)
weRP

o w3, (13)
(iii) a Newton step is defined as
W1 = aflgeré}jn qfoy (Wi we) + qr(w; wy)
(14)

+ 5||w—wt||§.

All those steps amount to solving quadratic problems on a
linearized network as shown in the following proposition.

Proposition 3.1. Letw; = (v1;...;v;) and 2, . . ., 2, be
defined by the chain of compositions in (2) applied to w.

Assume 1 to be decomposable as r(w;) = >_,_; ri(vi).
Gradient (12), Gauss-Newton (13) and Newton (14) steps

are given as wy+1 = wy + W* where w* = (05;...;0%)
is the solution of
—~1 1, Tz 4 5T P~
i -z P R
61{1}1{%7 Z 22’1 121+ Dy 21+ 21 440
20,2, =1
o Qi gl nk Bl as)
2 2y
subjectto Z; = A1Z_1 + By, for le{l,...,7}

Z =0,

where ¥, € RPUZ € R% with p;,8; defined by v in
Def. 2.1,

Al = szflqsl(vlel—l)Ta
br = vf(w<wt))v

By =V, ¢i(v,z1-1) "
p=0 forl#T
q = Vri(v)

1. for gradient steps (12), P, =0, R =0, @; =0,

2. for Gauss-Newton steps (13), P, = V2f(¢(w;)),
Pl = Oforl 7é T, Rl = 0, Ql = VQT'I(’Ul),

3. for Newton steps (14), defining N\ as A\, =
Vi(we)) and N1 Vo1 O1(vr, z1—1) N\ for
Il e {1,....,7}, P Vif(p(wy)), Py =
Vgl,lzl,ldjl(vl’zl—l)[’?’7)‘1} for 1 € {1,...,7’},
Ry = Vi L, du(v,z-0)[5 M) Q= V(o) +
v%”)l(bl(vhzl—l)[','7>\l]-

Quadratic problems with linear compositions can be
solved efficiently by dynamic programming such that the
complexity of all these steps is linear w.r.t. to the length
7 of the chain. We present in (Roulet & Harchaoui 2019)
the detailed computation of a Newton step. This involves
the inversion of intermediate quadratic costs at each layer.
Gauss-Newton steps can also be solved by dynamic pro-
gramming and can be more efficiently implemented using
an automatic differentiation procedure as we explain be-
low.

Forward-backward algorithm. For gradient steps the
resolution of Eq. (15) by dynamic programming amounts
to the classical forward-backward algorithm detailed be-
low as shown in (Roulet & Harchaoui 2019). Given
a chain of 7 layers RP — R? as defined in
Def. 2.1 and a differentiable objective f, the forward-

backward algorithm computes the gradient V[f o] (w) =

(91;-..39-) € RPwith g; = V,, [f o 9](w) € R as fol-
lows.
(A) For | = 1,...,7, starting with 29 = x, com-

pute z; = (v, 2—1) and store V., ¢ (v, zi-1),
vzl,1¢l(vlazl—1)‘

(B) Forl = 7,...,1, starting from A\, = V f(z,), com-
pute A1 = Vz,_l@(vl,zl,l))\l and output g; =
Vo, @1(vi, z1-1) A

Without additional information on the structure of the lay-
ers, the cost of the backward pass (B) is of the order of

¢ (Z 01181+ m&)

=1
elementary operations during the backward pass. Com-
pared to a naive implementation of the chain-rule that
would compute Vi)(w) and V f(w) separately, then mul-
tiply both at a cost O((>_;_, 8)(>_/_; 1)), the forward
backward algorithm exploits well the composite structure
of the chain.

For chain of layers of the form (5), this cost can
be refined as shown in (Roulet & Harchaoui 2019).
Specifically, for a chain of fully-connected layers with
element-wise activation function, no normalization or
pooling, the cost of the backward pass is then of the
order of O (}]_,(2d;—1 + 1)(md;)?) elementary op-
erations. For a chain of convolutional layers with
element-wise activation function, no normalization or
pooling, the cost of the backward pass is of the order

of O (Zl;l(%zf7 nis| +ninf)de) elementary opera-
tions.

Gauss-Newton by automatic-differentiation. The
Gauss-Newton step can also be solved by making calls
to an automatic differentiation procedure as shown
in (Roulet et al. 2019) and stated in the framework
considered in this paper. We present the definition of an
automatic differentiation oracle below.

Definition 3.2 ((Roulet et al. 2019, Definition 3.3)). An
automatic differentiation oracle is a procedure that, given
a differentiable chain of compositions 1) : RP — R? as
defined in Def. 2.1, and w € RP computes

s = Viy(w)s foranys € R

Proposition 3.3. Consider the Gauss-Newton-step (13)
for convex objective f and convex decomposable regular-
ization r(w) = Y., ri(v) for w = (v1;...;0.). We
have that
1. the Gauss-Newton-step amounts to solving
min g3 (s) + g7 (= V) (w)s) (16)
where 4(y) = qr((w) + g b(w), §(w) =
qr(wy + w;wy) + |wl||3/2 and for a function f we
denote by f* its convex conjugate,
2. the Gauss-Newton-step reads wiy1 = w; +
V@ (—Vip(wy)s*) where s* is the solution of (16),
3. the dual problem (16) can be solved by 2q + 1 calls
to an automatic differentiation procedure.

Proposition 3.3 shows that a Gauss-Newton step is only
2q + 1 times more expansive than a gradient-step. Pre-
cisely, for a deep network with a supervised objective, we
have ¢ = nk where n is the number of samples and & is
the number of classes. A gradient step makes then one call
to an automatic differentiation procedure to get the gradi-
ent of the batch and the Gauss-Newton method will then
make 2nk + 1 more calls. If mini-batch Gauss-Newton
steps are considered then the cost reduces to 2mk+-1 calls
to an automatic differentiation oracle, where m is the size
of the mini-batch of the examples.

4 Optimization complexity

The convergence guarantee of a first-order method to-
wards a e-stationary point is governed by the smoothness
property of the objective, i.e., the Lipschitz continuity of
the function itself or its gradient when defined. In the fol-
lowing, for a function f, we denote by

my= sup |f(z)]
z€dom f
r,yc€dom f, x#y Hl’ - yHQ
A\ -V
Lo owp V@ =V
z,y€dom f, x#£y HLC - yH2

a bound on the function, its Lipschitz-continuity parame-
ter and the Lipschitz-continuity parameter of its gradient
(if it is defined) respectively. We study smoothness prop-
erties of the functions w.r.t. the Euclidean norm of their

variables. In particular, for deep networks it means that
we consider the Euclidean norm of the vectorized batch
of inputs or images. For a class of functions C we denote
by subscripts the properties that the functions possess. For
example, we denote by C; 1, the set of differentiable func-
tions that are ¢-Lipschitz continuous and L-smooth w.r.t.
the Euclidean norm, i.e., with L-Lipschitz continuous gra-
dients as defined in Eq. (17).

Note that the propositions below give upper bounds on
the smoothness of the function achieved through chain-
composition. For a trivial composition such as f o f~1,
the upper bound is clearly loose. The upper bounds we
present here are informative for non-trivial architectures.

Smoothness of chain of layers. We first present a gen-
eral result for chain of layers without specific structure.
Although the result is not readily applicable to deep net-
works, it clarifies the recurrence used to compute the
smoothness of a chain of compositions.

Proposition 4.1. Consider a chain v of T layers as de-
fined in Def. 2.1, by layers ¢; € Cgm’Lm.
(i) An upper-bound on the Lipschitz-continuity of the
chain i is given by L, = £,, where forl € {1,...,7},
b =Ly +lialy,
ly = 0.

(ii) An upper-bound on the smoothness of the chain) is

given by L, = L., where forl € {1,...,7},

L; = Ll—lgqﬁl + L¢l(1 + 51_1)2
Lo =0.

Layers of deep networks are a priori not Lipschitz con-
tinuous. To get an estimate of their properties we need
to dive into their specific parametrization and to consider
their properties on compact sets as tackled in the follow-
ing proposition. We denote by By ;, the set of functions b
defined as in (6) by a L-smooth bilinear function b* and a
(-Lipschitz continuous linear function 5°.

Proposition 4.2. Consider a chain 1 of T layers as de-
fined in Def. 2.1 whose layers ¢; are defined as in (5) by
c € CmCz’ECILCI’ b € Bel’l’l‘bl’ a; € Czﬂz’Laz and m; €
Ce,, L., Denote C = {w = (v1;...507) Juill2 < i}

(i) An upper-bound on the output of the chain ¢ on C'is

given by my,(C) = m, where forl € {1,...,7},
my = Lo, lny i (Ty—1 Ly, +Cy,) + Q10

mo = [|z|2,
where y_1 = min{({c,m_1+cr0), Me, b G0 =
[0 a(0)[2, cro0 = [[c(0)[[2-

(ii) An upper-bound on the Lipschitz-continuity of the
chain ¢ on C is given by £,(C) = (., where for
le{l,...,7}

O = Ly lulo,(G—1le,py + 15—1) + Lo, b, la, (18)
ly = 0.

(iii) An upper-bound on the smoothness of the chain 1 on
C is given by L (C) = L, where forl € {1,...,7},

Ly = L1 Lyl l.,
+ (La, (€, Loy p11)*+ L, Lo, pula,)07

+ 2(L&lécl Lbz L (Lbl ml*1+€bl)+Lbz 861,[&;)glfl

+ Lﬁl (Lb[ml—l + €b1)27
LO = 07
where U, = {0, and Ly,

19)

=Ly 02 + Lo lr,.

T ag

Convergence rate to a stationary point. We recall the
stationary convergence result of a gradient descent given
the smoothness property. We denote C, 1, (C) the set of
functions ¢ Lipschitz continuous and L smooth on a com-
pact set C'.

Proposition 4.3. Consider a composite problem

min - f($(w)) +r(w),
subjectto w e C

where 1) € C@vaw(C)’ fe Cgf7Lf(1/)(O)), r e CLT(C)
and C = {w = (vi;...;v.) @ |lull2 < i}, a projected
gradient descent with step-size v = (Lyly + @Lf +
L,)~! converges to an e-stationary point in at most

Lyly+02L;+ L,
O<¢f P f >

€2
iterations.

Note that, since gradient descent guarantees monotonic
decrease, one can replace C' in the above proposition by
the initial sub-level set of the objective f oy + 7. A

backtracking-line search can be incorporated into the gra-
dient descent leading to the same rate. A similar result
can be obtained for stochastic optimization.

S Application

We apply our framework to assess the smoothness prop-
erties of the Visual Geometry Group (VGG) deep net-
work used for image classification (Simonyan & Zisser-
man 2015).

5.1 VGG network

The VGG Network is a 16-layer convolutional network
for image classification that achieved state-of-the-art per-
formance at the ImageNet competition at the time. Its
architecture is detailed in (Roulet & Harchaoui 2019).
We consider in the following smoothness properties for
mini-batches with size m = 128, i.e., by concatenating
m chains of layers ¥(") each defined by a different in-
put’. These define incremental gradient oracles and their
smoothness control the optimization process analogously
as in Prop. 4.3.

Smoothness computations. To compute the Lipschitz-
continuity and smoothness parameters, we recall the list
of Lipschitz continuity and smoothness constants of each
layer of interest. For the bilinear and linear operations
we denote by L the smoothness of the bilinear operation
and by ¢ the Lipschitz-continuity of the linear operation.
We denote by n” number of patches of the convolution
operation. The smoothness constants of interest are

gconv = vmnp, Lconv = W,

Ceant = /M, Lean = 1,

fReLu = 1, LRery not defined,
ésoftmax = 2, Leoftmax = 4,
Cmaxpool = 1, Limaxpool not defined,
6. liog = 2, Liog = 2.

A Lipschitz-continuity estimate of this architecture can
then be computed using Prop. 4.2 on a Cartesian product
of balls C = {w = (v1;...;v16) : |Jurlle S p}forp =1
for example.

SR

3This highlights the impact of the size of the mini-batch for batch-
normalization.

5.2 Variations of VGG

Smooth VGG. First, the VGG architecture can be made
continuously differentiable by considering the soft-plus
activation instead of the ReLU activation and average
pooling instead of the max-pooling operation. As shown
in (Roulet & Harchaoui 2019), we have

L. Eavgpool =1, Lavgpool =0,
2. gsoftplus =2, Lsoftplus =4.

Denoting /vca and fvaa-smooth the Lipschitz-continuity
estimates of the original VGG network and the mod-
ified original network on a Cartesian product of balls
C ={w = (v1;...;v16) : |lu]l2 < 1}, we get using
Prop. 4.2,

EVGG ~ EVGG—smooth

The only difference between the two computations resides
in the constant agoftpius(0) # 0.

Batch-normalization effect. We can also compare
the smoothness properties of the smoothed network
with the same network modified by adding the batch-
normalization layer for m inputs and e normalization pa-
rameter at each convolutional layer. As shown in (Roulet
& Harchaoui 2019) , the batch-normalization satisfies

—1/2 —-1/2 _—1
1. Mpatch=dm, Lhatcn=2€ / , Lbatecn=2m 12e-1,

DenOting eVGG—smooth’ LVGG—smooth and gVGG—batch’
LvGG-bateh the Lipschitz-continuity and smoothness es-
timates of the smoothed VGG network with and without
batch-normalization respectively on a Cartesian product
of balls C = {w = (v1;...;v16) : |lugll2 < 1}, we get
using Prop. 4.2,

< lvaa-batch
< LvGG-batch

VG G-smooth

for e=10"2,
LVGG—smooth

> lvaG-batch
> LvaG-batch

for €= 1027 ZVGG—smooth
LVGG—smooth
Intuitively, the batch-norm bounds the output of each
layer, mitigating the increase of m; in Eq. (18) and (19).
Yet, for a small e, this effect is balanced by the non-
smoothness of the batch-norm layer (which for ¢ — 0
tends to have an infinite slope around 0).

Acknowledgments. This work was supported by NSF
CCF-1740551, NSF DMS-1839371, the program “Learn-
ing in Machines and Brains”, and faculty research
awards.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp,
A, Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster,
M., Shlens, J., Steiner, B., Sutskever, 1., Talwar, K., Tucker, P., Vanhoucke,
V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y. & Zheng, X. (2015), ‘“TensorFlow: Large-scale machine learning on
heterogeneous systems’.

URL: http://tensorflow.org/

Anthony, M. & Bartlett, P. (2009), Neural Network Learning: Theoretical Foun-
dations, Cambridge University Press.

Duda, R., Hart, P. & Stork, D. (2012), Pattern classification, 2nd edn, John Wiley
& Sons.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T.,
Aspuru-Guzik, A. & Adams, R. P. (2015), Convolutional networks on graphs
for learning molecular fingerprints, in ‘Advances in Neural Information Pro-
cessing Systems 28’.

Goodfellow, I., Bengio, Y. & Courville, A. (2016), Deep Learning, The MIT Press.

Hocking, T. D., Joulin, A., Bach, F. & Vert, J.-P. (2011), Clusterpath: an algo-
rithm for clustering using convex fusion penalties, in ‘Proceedings of the 28th
International Conference on International Conference on Machine Learning’.

Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012), ImageNet classification with
deep convolutional neural networks, in ‘Advances in Neural Information Pro-
cessing Systems 25°.

Lecun, Y. (1988), A theoretical framework for back-propagation, in ‘1988 Con-
nectionist Models Summer School, CMU, Pittsburg, PA’.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L. & Lerer, A. (2017), ‘Automatic differentiation in
PyTorch’.

Pennington, J., Socher, R. & Manning, C. D. (2014), GloVe: Global vectors for
word representation, in ‘Empirical Methods in Natural Language Processing
(EMNLP)’, pp. 1532-1543.

Roulet, V. & Harchaoui, Z. (2019), ‘An elementary approach to convergence guar-
antees of optimization algorithms for deep networks’, arXiv preprint .

Roulet, V., Srinivasa, S., Drusvyatskiy, D. & Harchaoui, Z. (2019), Iterative lin-
earized control: stable algorithms and complexity guarantees, in ‘Proceedings
of the 36th International Conference on Machine Learning’. Long version.

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1985), Learning internal rep-
resentations by error propagation, Technical report, California Univ San Diego
La Jolla Inst for Cognitive Science.

Shalev-Shwartz, S. & Ben-David, S. (2014), Understanding Machine Learning:
From Theory to Algorithms, Cambridge University Press.

Simonyan, K. & Zisserman, A. (2015), Very deep convolutional networks for
large-scale image recognition, in ‘International Conference on Learning Rep-
resentations’.

Werbos, P. (1994), The Roots of Backpropagation: From Ordered Derivatives to
Neural Networks and Political Forecasting, Wiley-Interscience.

	Introduction
	Problem formulation
	Deep network structure
	Objectives
	Layers

	Oracle arithmetic complexity
	Optimization complexity
	Application
	VGG network
	Variations of VGG

