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Deep Networks

I A deep network
I transforms an input x0 into an output xτ
I through τ layers φt
I parameterized by u1, . . . uτ

I Given n input-output pairs (x (i), y (i))i=1,...n, supervised learning is

min
u=(u1,...,uτ )

1
n

n∑
i=1

L(y (i), ψ(x (i), u)) + λ‖u‖2
2
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Non-smooth Deep Networks

Problem
Many deep networks use non-smooth layers,
i.e., functions that are not everywhere differentiable e.g. the ReLU
I Resulting problem is non-convex and non-smooth,

theoretical guarantees are only asymptotic
I Classical automatic differentiation theory requires smooth functions
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Analysis of Non-smooth Deep Networks

Previous work
I Analyze convergence of non-smooth, non-convex functions

(Davis et al. 2020)
I Develop a theory for non-smooth automatic differentiation

(Kakade & Lee 2018, Bolte & Pauwels 2020)

This talk: Approximate non-smooth layers by smooth counterparts

Questions
I How to build an ε-accurate smooth approximation

of non-smooth networks for any fixed ε?
I How does this smoothing impact the performance of the deep networks?
I How does this smoothing impact the optimization path of e.g. SGD?
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Smoothable Functions

Definition
A function f is smoothable on a set C if, for any µ > 0,
we have access to an approximation fµ of f on C such that
1. ‖fµ(x)− f (x)‖2 ≤ µ ∀x ∈ C ,
2. fµ is differentiable with Lipschitz-continuous gradients, i.e., fµ is smooth

Examples
I ReLU: f (x) = max(x , 0)

I SmoothReLU fµ
I |f (x)− fµ(x)| ≤ µ
I fµ is 1/(2µ)-smooth

I Piecewise affine functions
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Smoothing Compositions

Smoothing Compositions
Let f , g be `f , `g Lipschitz-continuous resp. and smoothable.
Let µ > 0, then fµf ◦ gµg for

µf = µ/2 and µg = µ/(2`f )

is a smooth µ-accurate approximation of f ◦ g , i.e.,

∀x , ‖f ◦ g(x)− fµf ◦ fµg (x)‖2 ≤ µ

Take-away:
I Compositions of Lip. continuous, smoothable functions are smoothable

Deep network case
I Layers of deep networks are not Lipschitz continuous

w.r.t. both input and parameter
I We focus on the smoothing of deep networks on bounded sets

BR = {u = (u1, . . . , uτ ) : ‖ut‖2 ≤ Rt , for t ∈ {1, . . . , τ}}

for R = (R1, . . . ,Rτ )
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Automatic Smoothing
Inputs: deep network ψ composed of layers φt , accuracy ε,

bounds R1, . . . ,Rτ on the parameters
Output: smooth deep network ψε s.t.

‖ψ(x , u)− ψε(x , u)‖2 ≤ ε ∀x and ∀u ∈ BR

Overall scheme:
1. Forward pass to collect the smoothness properties of the layers
2. Backward pass to compute a ε-accurate smooth approx.
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Smoothness Estimation

Smoothness estimation
I For f smoothable, smoothness of fµ generally takes the form L + K/µ
I Given the Lip. continuity and the smoothness constant of the layers,

an estimate of the smoothness of ψε can be computed in a forward pass
I We get

I a bound mτ on the output of ψε
I a Lip. continuity constant `τ of ψε
I a smoothness constant Lτ of ψε
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Optimization Consequences

Is it a local minimum indeed?
I Denote

F (u) = 1
n

n∑
i=1

L(y (i), ψ(x (i), u)) and Fε(u) = 1
n

n∑
i=1

L(y (i), ψε(x (i), u))

such that
|F (u)− Fε(u)| ≤ ε ∀u ∈ BR

I If û is a ε-minimum of Fε on its neighborhood, i.e.,

Fε(û)− min
u∈Bη(û)

Fε(u) ≤ ε

where e.g. Bη(û) = {u : ‖û − u‖2 ≤ η} ⊂ BR

I Then û is 3ε-minimal for F on this neighborhood, i.e.

F (û)− min
u∈Bη(û)

F (u) ≤ 3ε
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Performance Comparison

Setup
I MLP on MNIST, 3 hidden layers with ReLU
I ConvNet on CIFAR10, 3 hidden layers with ReLU
I Logistic loss, regularization λ = 10−6

Comparison procedure
I Run SGD on original network ψ with stepsize found by grid-search
I Compute ε-accurate smooth approx. of ψ, denoted ψε
I Run SGD with the same stepsize on ψε

Smoothing used for each layer for an ε = 1 accurate approx.

Layer 1 2 3 4

MLP 5 · 10−6 2 · 10−4 2 · 10−2 0

ConvNet 2 · 10−6 2 · 10−4 2 · 10−2 0
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Performance Comparison

MLP ConvNet

Train Loss 1.64 · 10−2 ± 4.39 · 10−6 0.57± 1.85 · 10−2

Test loss 1.54 · 10−2 ± 4.52 · 10−5 2.04 · 10−2 ± 6.21 · 10−4

Train Acc. 100.0± 0 76.31± 0.79

Test Acc. 98.33± 4.20 · 10−2 72.77± 0.76

Average performance of the non-smooth network and the smoothed
counterparts for a range of accuracies ε ∈ {10−6, . . . , 101}

Take away:
No noticeable changes in performance between non-smooth and smoothed
networks
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Optimization Path

Plots
I Relative difference between

I u(k) the iterate of SGD on ψ
I u(k)

ε the iterate of SGD on ψε
I Same seeds are used for ψ and ψε
I Results are averaged over 10 seeds

Interpretation
I As ε decreases the relative

difference does not tend to 0
I The non-smoothness has an

impact on the optimization path

Thanks!
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