On the Smoothing of Deep Networks

Vincent Roulet, Zaid Harchaoui

CISS 2021

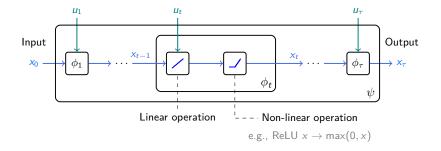
Deep Networks

A deep network

- transforms an input x₀ into an output x_r
- through τ layers ϕ_t
- parameterized by $u_1, \ldots u_{\tau}$

• Given *n* input-output pairs $(x^{(i)}, y^{(i)})_{i=1,...n}$, supervised learning is

$$\min_{u=(u_1,...,u_{\tau})} \quad \frac{1}{n} \sum_{i=1}^n \mathcal{L}(y^{(i)},\psi(x^{(i)},u)) + \lambda \|u\|_2^2$$



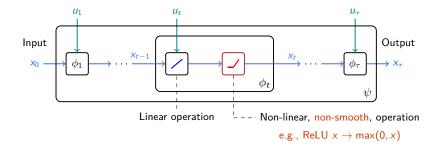
Non-smooth Deep Networks

Problem

Many deep networks use non-smooth layers,

i.e., functions that are not everywhere differentiable e.g. the ReLU

- Resulting problem is non-convex and non-smooth, theoretical guarantees are only asymptotic
- Classical automatic differentiation theory requires smooth functions



Analysis of Non-smooth Deep Networks

Previous work

- Analyze convergence of non-smooth, non-convex functions (Davis et al. 2020)
- Develop a theory for non-smooth automatic differentiation (Kakade & Lee 2018, Bolte & Pauwels 2020)

This talk: Approximate non-smooth layers by smooth counterparts

Questions

- How to build an ε-accurate smooth approximation of non-smooth networks for any fixed ε?
- How does this smoothing impact the performance of the deep networks?
- How does this smoothing impact the optimization path of e.g. SGD?

Smoothable Functions

Definition

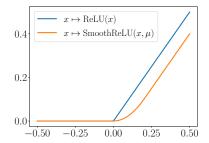
A function f is smoothable on a set C if, for any $\mu > 0$, we have access to an approximation f_{μ} of f on C such that

1.
$$\|f_{\mu}(x) - f(x)\|_2 \leq \mu \quad \forall x \in C$$
,

2. f_{μ} is differentiable with Lipschitz-continuous gradients, i.e., f_{μ} is smooth

Examples

- $\blacktriangleright \text{ ReLU: } f(x) = \max(x, 0)$
 - SmoothReLU f_{μ} $|f(x) - f_{\mu}(x)| \le \mu$
 - $|f(x) f_{\mu}(x)| \le \mu$ $f_{\mu} \text{ is } 1/(2\mu) \text{-smooth}$
- Piecewise affine functions



Smoothing Compositions

Smoothing Compositions

Let f, g be ℓ_f , ℓ_g Lipschitz-continuous resp. and smoothable. Let $\mu > 0$, then $f_{\mu_f} \circ g_{\mu_g}$ for

$$\mu_{f}=\mu/2$$
 and $\mu_{g}=\mu/(2\ell_{f})$

is a smooth μ -accurate approximation of $f \circ g$, i.e.,

$$\forall x, \quad \|f \circ g(x) - f_{\mu_f} \circ f_{\mu_g}(x)\|_2 \leq \mu$$

Take-away:

Compositions of Lip. continuous, smoothable functions are smoothable

Deep network case

- Layers of deep networks are not Lipschitz continuous w.r.t. both input and parameter
- We focus on the smoothing of deep networks on bounded sets

$$B_R = \{u = (u_1, \dots, u_{ au}) : \|u_t\|_2 \le R_t, \text{ for } t \in \{1, \dots, \tau\}\}$$
 for $R = (R_1, \dots, R_{ au})$

Automatic Smoothing

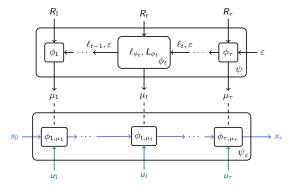
Inputs: deep network ψ composed of layers ϕ_t , accuracy ε , bounds R_1, \ldots, R_{τ} on the parameters

Output: smooth deep network ψ_{ε} s.t.

$$\|\psi(x,u) - \psi_{arepsilon}(x,u)\|_2 \leq arepsilon \quad orall x ext{ and } orall u \in B_R$$

Overall scheme:

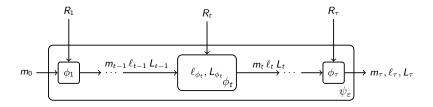
- 1. Forward pass to collect the smoothness properties of the layers
- 2. Backward pass to compute a ε -accurate smooth approx.



Smoothness Estimation

Smoothness estimation

- ▶ For f smoothable, smoothness of f_{μ} generally takes the form $L + K/\mu$
- Given the Lip. continuity and the smoothness constant of the layers, an estimate of the smoothness of ψ_{ε} can be computed in a forward pass
- We get
 - a bound m_{τ} on the output of ψ_{ε}
 - a Lip. continuity constant ℓ_{τ} of ψ_{ε}
 - ▶ a smoothness constant L_{τ} of ψ_{ε}



Optimization Consequences

Is it a local minimum indeed?

Denote

$$F(u) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(y^{(i)}, \psi(x^{(i)}, u)) \quad \text{and} \quad F_{\varepsilon}(u) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(y^{(i)}, \psi_{\varepsilon}(x^{(i)}, u))$$

such that

$$|F(u) - F_{\varepsilon}(u)| \leq \varepsilon \quad \forall u \in B_R$$

• If \hat{u} is a ε -minimum of F_{ε} on its neighborhood, i.e.,

$$F_{\varepsilon}(\hat{u}) - \min_{u \in B_{\eta}(\hat{u})} F_{\varepsilon}(u) \leq \varepsilon$$

where e.g. $B_\eta(\hat{u}) = \{u: \|\hat{u} - u\|_2 \leq \eta\} \subset B_R$

▶ Then \hat{u} is 3ε -minimal for F on this neighborhood, i.e.

$$F(\hat{u}) - \min_{u \in B_{\eta}(\hat{u})} F(u) \leq 3\varepsilon$$

Performance Comparison

Setup

- MLP on MNIST, 3 hidden layers with ReLU
- ConvNet on CIFAR10, 3 hidden layers with ReLU
- Logistic loss, regularization $\lambda = 10^{-6}$

Comparison procedure

- **>** Run SGD on original network ψ with stepsize found by grid-search
- Compute ε -accurate smooth approx. of ψ , denoted ψ_{ε}
- Run SGD with the same stepsize on ψ_{ε}

Smoothing used for each layer for an $\varepsilon = 1$ accurate approx.

Layer	1	2	3	4
MLP	$5\cdot 10^{-6}$	$2\cdot 10^{-4}$	$2\cdot 10^{-2}$	0
ConvNet	$2\cdot 10^{-6}$	$2 \cdot 10^{-4}$	$2 \cdot 10^{-2}$	0

Performance Comparison

	MLP	ConvNet
Train Loss	$1.64\cdot 10^{-2}\pm 4.39\cdot 10^{-6}$	$0.57 \pm 1.85 \cdot 10^{-2}$
Test loss	$1.54\cdot 10^{-2}\pm 4.52\cdot 10^{-5}$	$2.04\cdot 10^{-2}\pm 6.21\cdot 10^{-4}$
Train Acc.	100.0 ± 0	76.31 ± 0.79
Test Acc.	$98.33 \pm 4.20 \cdot 10^{-2}$	$\textbf{72.77} \pm \textbf{0.76}$

Average performance of the non-smooth network and the smoothed counterparts for a range of accuracies $\varepsilon \in \{10^{-6}, \dots, 10^1\}$

Take away:

No noticeable changes in performance between non-smooth and smoothed networks

Optimization Path

Plots

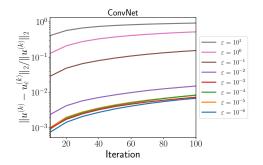
Relative difference between

- $u^{(k)}$ the iterate of SGD on ψ
- $u_{\varepsilon}^{(k)}$ the iterate of SGD on ψ_{ε}
- Same seeds are used for ψ and ψ_{ε}
- Results are averaged over 10 seeds

Interpretation

- As ε decreases the relative difference does not tend to 0
- The non-smoothness has an impact on the optimization path

Thanks!



- Bolte, J. & Pauwels, E. (2020), 'A mathematical model for automatic differentiation in machine learning', *NeurIPS*.
- Davis, D., Drusvyatskiy, D., Kakade, S. & Lee, J. D. (2020), 'Stochastic subgradient method converges on tame functions', *Foundations of computational mathematics* 20(1), 119–154.
- Kakade, S. M. & Lee, J. D. (2018), 'Provably correct automatic sub-differentiation for qualified programs', *NeurIPS*.