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Recovery Problems

Recovery from direct measurements
Recover an unknown signal β∗ ∈ Rd with d features from n observations

yi = x>i β∗ for i = 1, . . . , n

Example

−→
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Recovery Procedures

Dense β∗
Without further assumptions, solve

min
β∈Rd

‖Xβ − y‖22 (LS)

with y = (y1, . . . , yn)> ∈ Rn, X = (x1, . . . , xn)> ∈ Rn×d

Statistical Viewpoint
I Requires σmin(X) > 0 to recover β∗, so at least n ≥ d observations

Optimization Viewpoint
I Needs at most

√
κ log ε−1 where κ = σmax(X)2/σmin(X)2,

iterations to get an ε accuracy using e.g. a conjugate gradient method
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Recovery Procedures

Sparse β∗
Consider the additional assumption that β∗ is k-sparse, i.e.,

‖β∗‖0 := |{i : β∗i 6= 0}| = k � d

Ideal Procedure
Solve

min
β∈Rd

‖β‖0

s.t. y = Xβ

Statistical viewpoint
I Needs approx. k log d random observations (Cohen et al., 2009)

Optimization viewpoint
I Cannot be solved in reasonable time
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Recovery Procedures

Sparse β∗ Consider the additional assumption that β∗ is k-sparse, i.e.,

‖β∗‖0 := |{i : β∗i 6= 0}| = k � d

Dantzig selector (Candes and Tao, 2007)
Approximate ‖β‖0 by ‖β‖1

min
β∈Rd

‖β‖1 (D)

s.t. y = Xβ

Statistical viewpoint
I Needs approx. k log d random observations e.g. (Cohen et al., 2009)

Optimization viewpoint
I Can be solved in polynomial time
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Optimization and Statistical Complexities

Dense β∗ k-sparse β∗

Statistical Complexity
(number of random observations

needed to recover β∗)
d k log d

Optimization complexity
(number of iterations
to get an ε accuracy)

√
κ log ε−1 1/ε

Condition number κ σmax(X)2/σmin(X)2 ?

Questions
1. Can we get a better convergence in the sparse case?
2. What is the condition number in the sparse case?
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Optimization Method

Optimization algorithm (NESTA) (Becker et al., 2011)
A classical optimization algorithm for the Dantzig selector problem is to
1. Get an ε-accurate smooth approximation of ‖ · ‖1, denoted hε
2. Apply an accelerated projected1 gradient descent

min
β∈Rd

hε(β)

s.t. Xβ = y

Problems
I Convergence rate of NESTA does not depend on recovery conditions . . .
I In practice, this algorithm is restarted to obtain faster convergence,

but no theoretical guarantees exist . . .

1The projection is assumed to be easily available
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Restarts
Gradient Descent
Discretization of

ẋ(t) = −∇f (x(t))

Accelerated gradient descent
Discretization of

mẍ(t) + αẋ(t) = −∇f (x(t))

I m mass of a ball
I α friction coefficient
I −∇f (x(t)) driving force

→ The ball accumulates inertia

Restarts
I Stop the ball at some time

(cancel the inertia of the ball)
I Restart the movement from last

position

....
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mẍ(t) + αẋ(t) = −∇f (x(t))

I m mass of a ball
I α friction coefficient
I −∇f (x(t)) driving force

→ The ball accumulates inertia

Restarts
I Stop the ball at some time

(cancel the inertia of the ball)
I Restart the movement from last

position

....

8 / 30



Restarts
Gradient Descent
Discretization of
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Scheduled Restarts

Formalization
The NESTA algorithm can be summarized as a procedure

A : β0, ε, t → β̂

where
I β0 is the initial point
I ε is the target accuracy (controls the approximation of ‖ · ‖1)
I t is the number of iterations
I β̂ is the output

Scheduled restarts
Restart the algorithm from last iterate after some number of iterations, i.e.,
build a sequence

xi = A(xi−1, εi , ti )
with
I εi = εi−1/2 (smaller target accuracy at each restart)
I ti chosen in advance
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Error Bound

Why do restarts accelerate convergence for sparse recovery problems?
Convexity is not enough to explain the phenomenon

Definition (Error bound)
A function f is said to satisfy an error bound of order 1 with param. µ if

f (x)−min
x

f (x) ≥ µ dist(x ,X ?) (EB)

where dist(x ,X ?) is the Euclidean distance from x to X ? = arg minx f (x).

Idea:
The objective f is a good surrogate
for the distance to the set of
minimizers X ?

See e.g. (Bolte et al., 2017)

x 7→ f (x)

x 7→ µd(x,X ?)

Non-convex function that satisfies (EB)
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Linear Convergence with Restarts

Without restarts (Nesterov, 2005)
After N iterations, NESTA outputs β̂ s.t.

‖β̂‖1 − ‖β?‖1 ≤
2d‖β0 − β?‖22

εN2 + ε

2
where β? a minimizer of the Dantzig selector problem

Proposition (R. et al., 2020a)
Assume that the sparse recovery problem satisfies an error bound,

‖β‖1 − ‖β?‖1 ≥ µ dist(β,B?) for any β ∈ Rd s.t. Xβ = y

where β? ∈ B? and B? is the set of minimizers of the problem.

After N total number of iterations, optimal scheduled restarts output β̂ s.t.

‖β̂‖1 − ‖β?‖1 ≤ O(exp(−µN))

Take-aways:
I Using restarts we get an exponential convergence rate
I If µ is unknown adaptive strategies are optimal up to a logarithmic factor
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Plain NESTA vs NESTA with Restarts

Iterations

I Best restarted NESTA (solid red line)
I Practical restart schemes (dashed red line)
I Plain NESTA with low accuracy ε = 10−1 (dotted black line)
I Plain NESTA with higher accuracy ε = 10−3 (dash-dotted black line)
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Optimal Convergence Rates with Restarts
More generally consider the problem

min
x

f (x)

Proposition (R. and d’Aspremont, 2020)
Consider f convex and L, µ > 0 s.t.

‖∇f (x)−∇f (y)‖2 ≤ L (Non-Smooth)

Consider the optimal algorithm A for convex, Hölder smooth functions
with rate of convergence after N iterations,

f (x̂)−min
x

f (x) ≤ O(N−ρ)

then optimal/adaptive restarts of A output x̂ s.t.

f (x̂)−min
x

f (x) ≤

{
O(exp(−N)) if s = r

O(N−ρ/(1−s/r)) if s < r

}
≤ O(N−ρ)

where N is the total number of iterations of the algorithm.
Take-away
I Restarts can exploit the error bound property of the objective

to get exponential or faster convergence rates than without restarts
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How to Uncover an Error Bound
Condition for exact recovery
For a given β∗ s.t. y = Xβ∗, the Dantzig selector problem

min
β∈Rd

‖β‖1 (D)

s.t. y = Xβ

recovers the original signal if there exists no β 6= β∗ s.t.

y = Xβ and ‖β‖1 ≤ ‖β∗‖1

In terms of descent direction
There is no z = (β − β∗) 6= 0 s.t.

Xz = 0 and z ∈ T (β∗)

where T (β∗) is the cone of descent
directions for ‖ · ‖1 at β∗

T (β∗) := cone{z : ‖β∗ + z‖1 ≤ ‖β∗‖1}
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Condition for Exact Recovery as Conic Infeasibility Problem

Formulation as an infeasibility problem
Assessing exact recovery is then equivalent to assess the infeasibility of

find z (PX ,T )
s.t. Xz = 0

z ∈ T \ {0}

where T = T (β∗)

Distance to infeasibility
LetMT = {X : PX ,T is infeasible}

dT (X) = inf
Y
{‖Y ‖2 s.t. X+Y 6∈ MT }

the distance to infeasibility of PX ,T
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Condition Number and Error Bounds

Definition (Condition Number)
Define the condition number of solving PX ,T as

CPX,T := ‖X‖2
dT (X)

Proposition (R. et al., 2020a)
If CPX,T < +∞, then the Dantzig selector problem satisfies the error bound

‖β‖1 − ‖β∗‖1 ≥ (2CPX,T − 1)−1‖β − β∗‖1
for all β ∈ Rd s.t. Xβ = Xβ∗,

which ensures that
I β∗ is the unique minimizer
I Number of total iterations of restarts to get ε accuracy is bounded by

O(CPX,T log ε−1)
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Link with Usual Exact Recovery Conditions

Proposition (Freund and Vera, 1999)
The distance to infeasibility for PX ,T can be expressed as

dT (X) = min
β∈T
‖β‖2=1

‖Xβ‖2 := σmin,T (X)

i.e., it is the minimal conically restricted singular value of X.

Minimal Conically Restricted Singular Values in recovery Problems
I (Bickel et al., 2009) if σmin,T (X) > 0,

then exact recovery for the Dantzig selector is ensured
I (Bickel et al., 2009) σmin,T (X) controls the oracle performance of the Lasso
I (Chandrasekaran et al., 2012) σmin,T (X) controls the performance of the

recovery problem for noisy observations
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Illustration for Random Observations

Proposition (R. et al., 2020a)
For (x1, . . . , xn) i.i.d.∼ N (0, Id), in high probability, if β∗ is k-sparse with

k .
n

log d
then

‖β‖1 − ‖β∗‖1 ≥ (1−
√

k log(d)/n)‖β − β∗‖1
for all β ∈ Rd s.t. Xβ = Xβ∗,

I β∗ is the unique minimizer
I Number of total iterations of restarts to get ε accuracy is bounded by

O

(
log ε−1

1−
√

k log(d)/n

)

Take-away
I More observations, fewer iterations
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Optimization and Statistical Complexities

Dense β∗ k-sparse β∗

Statistical Complexity
(number of random observations

needed to recover β∗)
d k log d

Optimization complexity
(number of iterations
to get an ε accuracy)

√
κ log ε−1 κ log ε−1

Condition number κ σmax(X)2/σmin(X)2 σmax(X)/σmin,T (X)

Take-away
1. Optimal convergence rates are obtained

by exploiting error bounds using restarts
2. Error bounds can be derived from previous statistical analysis
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Non-Linear Dynamical Problems

Non-Linear Dynamics
We consider systems described by the following computations

x0 = x xt = φt(xt−1, ut) for t = 1, . . . , τ

summarized as
ψ : (x , u1, . . . , uτ )→ (x1, . . . , xτ )

x0 φ1

u1

x1

. . . φt

ut

xt

. . . φτ

uτ

xτ

xt−1 xt
ψ
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Non-Linear Control Problems
Control Example

min
u1,...,uτ

‖xτ − x?‖22 +
τ∑

t=1

λ‖ut‖22

s.t

x0 = x xt = φt(xt−1, ut) for t = 1, . . . , τ

I xt state of the system
I ut control of the system (e.g. through a force)
I φt dynamics of the system known by Newton’s law (often non-linear)
I τ length of the movement

State	at	time	t+1State	at	time	t
Dynamic
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Non-Linear Control Problems
Control Objective
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Non-Linear Prediction Models
Deep Network Structure

min
u1,...,uτ

1
n

n∑
i=1

`(x (i)
τ , y (i)) +

τ∑
t=1

gt(ut)

s.t.

x0 = x xt = φt(xt−1, ut) for t = 1, . . . , τ
I x0 input of the network
I ut weights of the network at layer t
I φt tth layer of the netwrok
I τ depth of the network

x0

Input

φ1

u1

. . .

ut

φt

. . . φτ

uτ

xτ

Output

Linear operation

e.g. product u>t xt−1

Non-linear operation
e.g., sigmoid

xt−1 xt
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Non-Linear Prediction Models
Deep Learning
n pair of inputs outputs examples (x (i), y (i)), loss `, regularization gt
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n
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0 = x (i) x (i)
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Non-Linear Dynamical Problems

Generic problem
Given τ computations φt define ψ(x0, u) = (x1; . . . ; xτ ) as below,
generic problems read

min
u

h(ψ(x0, u)) + g(u)

I h(x) =
∑τ

t=1 ht(xt) with x = (x1; . . . ; xτ )

I g(u) =
∑τ

t=1 gt(ut) with u = (u1; . . . ; uτ )
I ψ(x0, u) is a chain of computations

x0 φ1

u1

x1

. . . φt

ut

xt

. . . φτ

uτ

xτ

xt−1 xt
ψ
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Non-Linear Dynamical Problems

Motivation
I In practice, classical non-linear control algo. are extremely efficient
I How can we explain this phenomenon from an optimization viewpoint?

Questions from an optimization viewpoint
How does the structure of the chain of computations impact
I the computational complexity of classical optimization methods?
→ can we use e.g. Newton/Gauss-Newton methods that may be faster?
I the smoothness properties of the problem?
→ how many time steps τ are reasonable to get fast convergence?
I the convergence of classical optimization methods?
→ can we prove global convergence under suitable assumptions?
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Cost of one Step of Classical Optimization Methods

Analysis
Each step can be defined as a subproblem
1. Decompose the sub-problem into the chain of computations
2. Get an efficient implementation of the subproblem

Lemma (R. et al., 2019 2)
Gradient, Gauss-Newton or Newton steps amount can be solved by dynamic
programming at a linear cost w.r.t. to the length τ .

Take-aways:
I Naive Gauss-Newton and Newton implementations would require O(τ 3)
I For e.g. deep learning, Gauss-Newton steps can also be computed by

automatic-differentiation, see (R. et al., 2019)
I Compared to classical methods (ILQR, ILEQG (Li and Todorov, 2004;

Whittle, 1990)) our analysis reveals that they are missing a regularization
term, see (R. et al., 2019, 2020b)

2See also (Dunn and Bertsekas, 1989) , (Sideris and Bobrow, 2005)
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Smoothness Properties
Automatic smoothness estimates (R. and Harchaoui, 2019)
Given the smoothness properties of the computations φt defining ψ,
we developed an automatic procedure to provide estimates of
(i) a bound, (ii) the Lip. cont., (iii) the smoothness of ψ on any bounded sets
Example for φt , `φ Lip. continous, Lφ smooth,

`ψ =
`φ − `τ+1

φ

1− `φ
Lψ =

Lφ
(
1− (1 + 2τ)(1− `φ)`τφ − `2τ+1

φ

)
(1− `φ)3

Automatic smoothing (R. and Harchaoui, 2021)
Given a chain of non-smooth but smoothable computations φt defining ψ, we
developed an automatic procedure to build a ε- smooth approximation of ψ

φ1 . . . `φt , Lφt
φt

. . . φτ `τ , ε
`t−1, ε `t , ε

R1 Rt Rτ

ε1 εt ετ

φ1,ε1 φt,εt φτ,ετ. . . . . .x0

u1 ut uτ

ψ

ψε
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Differentiable Programming à La Moreau

Moreau Gradients
Instead of computing ∇ψ, consider computing

∇ env(λ>ψ)(x) = arg min
y
λ>ψ(x + y) + 1

2‖y‖
2
2

Intuition:
I If ψ is linear, we retrieve a gradient
I Generally we get an implicit gradient

Why?
I The error of approximation by Moreau gradients

is controlled by an optimization method
I Can circumvent the vanishing/exploding smoothness issues

How?
We proposed to approx. this oracle by back-propagating Moreau gradients
I ∇xφt(xt−1, ut)λt becomes ∇ env(λ>φt(·, ut))(xt−1)
I ∇uφt(xt−1, ut)λt becomes ∇ env(λ>φt(xt−1, ·))(ut)
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Differentiable Programming à La Moreau: Application

Inverting a Deep Network (Fong et al., 2019)
Given an image, and a trained deep network,
find the part of the image responsible for its label

MGD

Soft Gradient Descent Gradient Descent Original imageApproximate Moreau Gradient Descent Gradient Descent Original Image
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Conclusion and Future Directions
Non-linear dynamical problems from an optimization viewpoint
How does the structure of the chain of computations impact
I the computational complexity of classical optimization methods X
I the smoothness properties of the problem? X
I the convergence of classical optimization methods? ?

Error bounds for non-linear dynamical problems
I For simple systems where we have control on every direction of the

acceleration X
I More generally, for non-linear control problems in continuous time,

feasibility of a movement has been studied in continuous time
as the controllability of the system

→ could be translated into properties of the discretized problem
I This could open the path for non-convex statistical models

with convergence guarantees of e.g. a gradient descent

Thanks!
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