
A REPRESENTATION-FOCUSED TRAINING ALGORITHM FOR DEEP NETWORKS

Vincent Roulet†, Corinne Jones‡, Zaid Harchaoui†

†Department of Statistics, University of Washington, Seattle, USA
‡Swiss Data Science Center, École polytechnique fédérale de Lausanne, Lausanne, Switzerland

ABSTRACT

We present an optimization algorithm for the training of deep
networks that focuses the optimization on the parameters of
the feature representation while eliminating the optimization
on the parameters of the prediction map. The proposed algo-
rithm can be analyzed for least-squares objectives for which
the implicit minimization can be obtained analytically on mini
batches. We illustrate the numerical performance of the opti-
mization algorithm with convolutional networks and explore
a variant using Adam as a wrapper algorithm.

Index Terms— deep neural networks, stochastic gradient
algorithms.

1. INTRODUCTION

Training algorithms for deep networks have been the subject
of an abundant literature. The stochastic gradient algorithm
and its adaptive practice-informed offsprings are popular ap-
proaches to learn the parameters of deep networks. A deep
network, however, involves two sets of different parameters:
the parameters of the hidden layers defining the feature repre-
sentation map, and the parameters of the ultimate layer defin-
ing the statistical prediction map. Common algorithms of the
stochastic gradient type treat these two sets equally, normal-
ization aside, by stacking all parameters into one large vector
and performing the optimization over this parameter vector.

We explore in this paper an approach that allows one to
drive the optimization process with the parameters of the fea-
ture representation by eliminating the parameters of the pre-
diction map via analytical or inexact optimization over a mini-
batch of data samples. We show that the resulting algorithm
can give smoother training curves and faster amortized train-
ing times when learning convolutional networks. We provide
a guarantee relating the accuracy of the gradients to the mini-
batch size and the smoothness constants of the objective.

Related work. Variable elimination has been used to solve
difficult nonlinear least-squares problems, by taking advan-
tage of the simplicity of the optimization with respect to a
subset of the variables [1]. This strategy is typically applied
with a Gauss-Newton-type algorithm to estimate a set of pa-
rameters from noisy observations for inverse problems.

The parameters spared by the elimination strategy are the
main parameters of interest in the scientific or engineering do-
main application. A popular example is the so-called Wiberg
algorithm [2] in computer vision for matrix factorization [3].
Variable elimination also underlies the profile likelihood in
stochastic modeling and semiparametric estimation, where
the nuisance parameters are eliminated to facilitate the es-
timation of the main parameters [4, 5]. For problems with
compositional structure, variable elimination, either exactly
or inexactly, can also be cast in a general framework of nu-
merical algorithms with implicit differentiation with reverse
mode automatic differentiation [6, 7].

The algorithm we present departs from these algorithms
by eliminating variables through mini-batch optimization, re-
freshing the mini-batches over the iterations by subsampling
data, and by focusing the optimization on the subset of pa-
rameters defining the feature representation in a deep net-
work. These distinctions are important in the context of ma-
chine learning, where the predictive accuracy can be of pri-
mary interest. The elimination of variables can be progres-
sively amortized during the learning process in terms of pre-
dictive accuracy. The algorithm has first been used to com-
pare convolutional neural networks and their kernelized coun-
terparts [8]. We present additional results and extended anal-
yses. Full proofs are available upon request to the authors.

Problem. We consider learning a feature representation
φ(·, θ) on a dataset of input-output pairs (xi, yi)

n
i=1 by mini-

mizing the average of a loss ` of an affine classifier parame-
terized byW, b computed on top of the feature representation,
i.e., by solving

min
θ,W,b

1

n

n∑
i=1

`(W>φ(xi, θ) + b, yi) + Ω(θ,W) ,

where Ω(θ,W) encapsulates regularization terms such as
Ω(θ,W) = λ‖W‖2F /2 + µ‖θ‖22/2.

If we choose a squared loss and a `22 penalty, for a given
feature representation parameterized by θ, the classifier can
be obtained in closed form, and we can reduce our problem to
minθ f(θ) where

f(θ) := min
W,b

1

n

n∑
i=1

`(W>φ(xi, θ)+b, yi)+Ω(θ,W).

The reduced objective f(θ) can be minimized by, e.g., gradi-
ent descent to converge to a solution θ∗ of the problem. In
the case where the feature representation φ(·, θ) is also linear
with respect to θ the proposed approach reduces to the Wiberg
algorithm used for matrix factorization [2, 3].

By considering the reduced objective, we eliminate the
classifier variables from the optimization process, which may
accelerate the optimization process as illustrated in Fig. 1. It
can easily be verified that, if a θ∗ approximates the minimum
of the reduced objective, then the tuple (θ∗,Wθ∗ , bθ∗), with
Wθ, bθ the corresponding classifier variables for a given θ,
provide an approximate minimum for the original problem.
The inconvenient aspect of considering the reduced objective
is that it breaks the finite-sum structure of the problem, pre-
venting us from using fast stochastic optimization algorithms.

To circumvent this issue, we consider mini-batch approx-
imations of the reduced objective f(θ). Formally, for a mini-
batch S ⊆ {1, . . . , n} of size |S| = m we consider

fS(θ) = min
W,b

1

m

∑
i∈S

`(W>φ(xi, θ) + b, yi) + Ω(θ,W),

and make gradient steps using this approximation, i.e., our
iterates are of the form

θk+1 = θk − τ∇fSk
(θk), (1)

for a given step size τ ≥ 0 and Sk a given subset of
{1, . . . , n}. By considering only mini-batches, our approach
is akin to using a ridge ensemble method on top of the rep-
resentation to assess the performance of the given repre-
sentation. Ensemble methods over data subsets can lead to
improved predictive accuracy compared to a single method
over the dataset [9].

We shall look into the bias of approximating ∇f(θ) by
∇fS(θ) for a squared loss. Our analysis leads to a worst-
case convergence guarantee for our optimization algorithm in
terms of convergence to a stationary point. We extend the ap-
proach for non-squared losses by considering Newton steps.
We present numerical experiments that demonstrate the po-
tential of our algorithm and an Adam based variant to train
deep networks.

2. LEAST-SQUARES OBJECTIVES

We consider a feature representation that outputs d features
and denote Φ(X, θ) = (φ(x1, θ), . . . , φ(xn, θ))

> ∈ Rn×d
the feature representation of the whole dataset. Similarly, we
consider learning for k classes and concatenate the outputs in
a matrix Y = (y1, . . . , yn)> ∈ {0, 1}n×k, where each label
yi is a vector indicating the class to which input i belongs.
The classifier consists of a matrix W ∈ Rd×k with offsets
b ∈ Rk. Finally we consider θ ∈ Rp to have p parameters.

Fig. 1: The blue dashed line represents the path taken by
gradient descent on a bivariate function. The plain red line
represents the path taken by gradient descent on a reduced
objective. Note that by eliminating one variable, we may cir-
cumvent oscillation issues from the variable y.

Gradient decomposition. For a squared loss and `22 penal-
ties on the parameters, the objective can be written as

min
θ,W,b

1

2n
‖Φ(X, θ)W + 1n b

> − Y ‖2F +
λ

2
‖W‖2F +

µ

2
‖θ‖22.

for some λ ≥ 0, µ ≥ 0. The reduced objective on a mini-
batch S of size |S| = m is given by fS(θ)=hS(Z)+µ‖θ‖22/2,
for Z = (z1, . . . , zn)>=Φ(X, θ), with

hS(Z) =
1

2m
‖ZSWS − YS‖2F +

λ

2
‖WS‖2F ,

WS = (λ I +ΣS)−1CS ,

ΣS = CovS(z, z), CS = CovS(z, y),

Z>S = (δiS(zi−ES [z]))ni=1, Y
>
S = (δiS(yi−ES [y]))ni=1,

where δiS = 1 if i ∈ S and 0 otherwise andES , CovS denote
the empirical mean and the empirical covariance on the sub-
set S respectively, e.g., ES [z] =

∑
i∈S zi/m, CovS(z, z) =∑

i∈S(zi − ES(z))(zi − ES [z])>/m.
We then have that

∇hS(Z) =
1

m
(ZSWS − YS)W>S ,

and for j ∈ {1, . . . , p}, denoting gj,i = ∂φ(xi, θ)/∂θj ,

∂fS(θ)

∂θj
=

1

m

∑
i∈S

(W>S zS,i − yS,i)>W>S gj,i + µθj ,

where zS,i = zi − ES [z], yS,i = yi − ES [y].

Gradient estimation. In the following, we assume that the
feature representation is bounded and Lipschitz-continuous
and define, for X={x1, . . . , xn},

r = sup
θ∈Rp,x∈X

‖φ(x, θ)‖2, ` = sup
θ∈Rp,x∈X

‖∇θφ(x, θ)‖2.

Consider mini-batches S to be subsets of size m chosen
uniformly at random without replacement from {1, . . . , n}.
In that case, the mean-squared error of the approximation of
the gradient can be upper-bounded as

E[‖∇fS(θ)−∇f(θ)‖22] ≤ O
(
qmn

2`2r6

λ4

)
, (2)

where qm = (n −m)/((n − 1)m). Bounds on the approxi-
mation error of the gradient may also be stated in high proba-
bility using the results of [10].

Convergence analysis. To ensure approximate conver-
gence of the iterative algorithm (1), it remains to appro-
priately choose the step size. The latter depends on the
smoothness of the reduced objective, which can be estimated
from the smoothness properties of the representation. We
then have the following convergence rate.

Theorem 2.1. Assume that the reduced objective for a
squared loss and a `22 penalty is L-smooth. If the mini-
batches S are subsets of size m chosen uniformly at random
without replacement from {1, . . . , n}, then an approximate
gradient descent using mini-batch approximations (1) with
step size τ ≤ 1/(2L) satisfies

min
i∈{0,...,k−1}

E‖∇f(θi)‖2 ≤ c
f(θ0)− f∗

τk
+O

(
qmn

2`2r6

λ4

)
where qm = (n −m)/((n − 1)m) and c is a universal con-
stant.

Theorem 2.1 is similar to usual convergence results for
non-convex stochastic optimization algorithms with here an
error term that naturally decreases as m → n. In particular
in the full-batch case (m = n), the above convergence result
matches the previously known convergence results for non-
convex optimization on the reduced objective f .

Computational complexity. Compared to a stochastic gra-
dient algorithm which computes the value of the original
objective and the gradient associated to it by automatic
differentiation, our algorithm computes the reduced objec-
tive by solving the least-squares problem associated to the
prediction map. This computation induces an overhead of
O(min{d,m}3) elementary computations compared to com-
puting the original objective. Once the optimal classifier is
computed, the back-propagation can be computed by using
the expression of the gradient of the reduced objective given
above which induces no overhead compared to the computa-
tion of the gradient of the original objective. In our imple-
mentation, we code the reduced objective in a differentiable
programming framework to access its gradient at a cost no
larger than the cost of computing the reduced objective [11].

Algorithm 1 Ultimate Layer Reversal step

1: Inputs: Mini-batch S ⊆ {1, . . . , n}, with |S| = m,
current parameters θk,Wk, bk, step-size τ , regularization
penalty Ω(θ,W) = λ‖W‖2F /2 + µ‖θ‖22/2

2: Compute q`i(·; ŷi) the quadratic approx. of `i = `(·, yi)
around the current predictions ŷi = φ(xi, θk)TWk + bk

3: Compute

fS(θ) = min
W,b

1

m

∑
i∈S

q`i(W
>φ(xi, θ) + b; ŷi) + Ω(θ,W)

4: Update the parameters via θk+1 = θk − τ∇fS(θk)
5: Compute the corresponding classifiers from the quadratic

approximation, i.e., compute Wk+1, bk+1 as

arg min
W,b

1

m

∑
i∈S

q`i(W
>φ(xi, θk+1)+b; ŷi)+Ω(θk+1,W)

6: Output: New parameters θk+1,Wk+1, bk+1

3. BEYOND LEAST-SQUARES OBJECTIVES

For non-squared losses we consider a reduced objective com-
puted as the minimizer of a quadratic approximation of the
objective. Namely, denoting θk,Wk, and bk the current pa-
rameters of the training and q`i(·; ŷi) a quadratic approxima-
tion of the loss `i = `(·, yi) around ŷi = W>k φ(xi, θk) + bk,
our reduced objective consists in computing for a mini-batch
S of size m

fS(θ) = min
W,b

1

m

∑
i∈S

q`i(W
>φ(xi, θ) + b; ŷi) + λΩ(θ,W).

A gradient step is then performed on hS and the correspond-
ing optimal classifier parameters are stored to compute the
next quadratic approximation. The overall algorithm is pre-
sented in Algorithm 1.

When implementing the algorithm, we consider adding
a regularization κ to ensure that the classifiers remain stable
along the iterations. Namely, we modify lines (3) and (5) by
adding a term κ‖W − Wk‖22/2 in the corresponding mini-
mization problems for stability.

4. EXPERIMENTS

We train deep networks with Algorithm 1 (termed “ULR-
SGO” for “Ultimate Layer Reversal-Stochastic Gradient Op-
timization”) and compare to using mini-batch stochastic gra-
dient optimization (SGO).

Experimental details. The tasks we consider are digit clas-
sification on MNIST [12] and image classification on CIFAR-
10 [13]. The network we use for digit classification is a ker-
nelized version of LeNet-5 [12], which we call the LeNet-5

(a) LeNet-5 CKN on MNIST
with 8 filters/layer

(b) LeNet-5 CKN on MNIST
with 128 filters/layer

(c) All-CNN-C CKN on
CIFAR-10 with 8 filters/layer

(d) All-CNN-C CKN on
CIFAR-10 with 128 filters/layer

Fig. 2: Average test loss vs. iteration when using the square
loss and training with the Ultimate Layer Reversal method
(ULR-SGO) vs. stochastic gradient optimization (SGO).

CKN. In contrast, for image classification we use a kernel-
ized version of All-CNN-C [14], which we call the All-CNN-
C CKN. When first introduced, LeNet5 and All-CNN-C were
among the best-performing architectures on their respective
tasks. In contrast to the original ConvNets, the CKNs are dif-
ferentiable with respect to both their weights and their inputs.
Moreover, it has been demonstrated that the ConvNets and
the CKNs perform similarly [8]. For both dataset-architecture
pairs we consider both 8 and 128 filters per layer, and we con-
sider both the square loss and the multinomial logistic loss.
The batch size is the largest batch size that fits on the GPU.1

The datasets are preprocessed as follows: the MNIST im-
ages are standardized, while the CIFAR-10 images are stan-
dardized channel-wise and then ZCA whitened. The networks
are initialized via the unsupervised spherical k-means proce-
dure described in [8]. The classifier parameters are initialized
by optimizing them for the initial feature representation on
the whole dataset. The hyperparameters are tuned to mini-
mize the loss on a hold-out set of size 10,000 images removed
from the training set. The L2 penalty on the classifier param-
eters is chosen from 2−40, 2−39, . . . , 20 based upon the pa-
rameter values at initialization. For ULR-SGO the step size τ
and the regularization parameter κ are simultaneously deter-
mined from 2−10, . . . , 2−2 and 2−7, . . . , 2−2, respectively, on
the trained networks. For SGO the step size is chosen in the
same way. In all cases, we do not regularize the network pa-

1For LeNet-5 CKN on MNIST with 8 (128) filters/layer this is 16,384
(1024). For All-CNN-C CKN with 8 (128) filters/layer this is 4096 (256).

(a) LeNet-5 CKN on MNIST
with 8 filters/layer

(b) LeNet-5 CKN on MNIST
with 128 filters/layer

(c) All-CNN-C CKN on CIFAR-
10 with 8 filters/layer

(d) All-CNN-C CKN on CIFAR-
10 with 128 filters/layer

Fig. 3: Average test loss vs. iteration when using the multino-
mial logistic loss and training with the Ultimate Layer Rever-
sal method (ULR-SGO) vs. stochastic gradient optimization
(SGO).

rameters, i.e., µ = 0. Following the hyperparameter tuning,
each network is trained for 1000 iterations. In all plots, the
error bands represent one standard deviation across 10 trials.

The code for the experiments was written using Py-
Torch [15], Faiss [16], and Scipy’s L-BFGS [17]. The
code for CKNs can be found here https://github.com/

cjones6/yesweckn. The code to reproduce experimental
results is available upon request to the authors.

Results. Fig. 2 displays the test losses of the compari-
son for LeNet-5 CKN on MNIST and All-CNN-C CKN on
CIFAR-10 with 8 and 128 filters/layer when using the square
loss. ULR-SGO is usually better than SGO throughout the
iterations. The final test loss from the ULR-SGO method
after 1000 iterations ranges from being 9% lower, on aver-
age, when classifying CIFAR-10 images with the All-CNN-C
CKN architecture with 128 filters/layer to being 44% lower,
on average, when classifying MNIST digits with the LeNet-5
CKN with 128 filters/layer.

This performance difference can also be observed when
using the multinomial logistic loss. Fig. 3 displays the results
from training the same networks with ULR-SGO and SGO,
but this time using the multinomial logistic loss. The final test
losses when using ULR-SGO vary between being 2% lower,
on average, when training the LeNet-5 CKN on MNIST with
128 filters/layer to being 47% lower, on average, when train-
ing the LeNet-5 CKN on MNIST with 8 filters/layer.

(a) LeNet-5 CKN on MNIST
with 8 filters/layer

(b) LeNet-5 CKN on MNIST
with 128 filters/layer

(c) All-CNN-C CKN on CIFAR-
10 with 8 filters/layer

(d) All-CNN-C CKN on CIFAR-
10 with 128 filters/layer

(e) LeNet-5 CKN on MNIST
with 8 filters/layer

(f) LeNet-5 CKN on MNIST
with 128 filters/layer

(g) All-CNN-C CKN on CIFAR-
10 with 8 filters/layer

(h) All-CNN-C CKN on CIFAR-
10 with 128 filters/layer

Fig. 4: Average test loss vs. time when using the squared
(top 4 panels) or the multinomial (4 bottom panels) logistic
loss and training with the Ultimate Layer Reversal method
(ULR-SGO) vs. stochastic gradient optimization (SGO).

While it is clear that ULR-SGO dominates SGO in terms
of its performance across iterations on the harder tasks, it is
also important to ensure that this is true in terms of time.
Fig. 4 provides the same plots as Fig. 2 and 3, except that the
x-axis is now time. The experiments with the multinomial
loss on architectures with 128 filters/layer were performed
with Nvidia GeForce 1080Ti GPUs. The remainder were per-

0 100
Iterations

0.02

0.04

Te
st

 L
os

s

ULR-SGO
ULR-Adam
SGO
Adam

Fig. 5: Average test loss vs iterations when using the squared
loss on LeNet5 ConvNet on MNIST by using gradients of
the reduced objective with stochastic gradient descent (ULR-
SGO) or with the Adam optimizer (ULR-Adam) compared
to the same optimization algorithms on the original objective
(SGO and Adam).

formed with Nvidia Titan Xp GPUs. With the exception of
the LeNet-5 experiment with 128 filters/layer and the multi-
nomial logistic loss, the ULR-SGO method still outperforms
the SGO method in terms of the test loss vs. time.

The gradient of the reduced objective can also be substi-
tuted in place of a regular gradient of a classical objective
in the update rule of a momentum based stochastic gradi-
ent algorithm such as Adam [18]. This leads to an inter-
esting variant of our approach suggested by the reviewers in
which Adam is used as a wrapper algorithm. To explore this
variant, we considered the original ConvNet architecture of
LeNet5 [12] with a squared loss and fixed regularization pa-
rameters (λ = µ = 10−3). The mini-batch size is fixed to
4096 and the learning rate parameters are tuned on a log10
basis for this experiment. In Fig. 5, we observe that the result-
ing algorithm, called ULR-Adam, is competitive compared
to ULR-SGD, and the gap is comparable to the gap between
Adam and SGD in the usual setting.

5. CONCLUSION

We presented an algorithm that allows one to eliminate the
optimization over the parameters of the prediction map and
focus the optimization on the parameters of the feature map.
This can result in faster training of deep networks in terms
of the number of iterations and the total amortized time.
The proposed algorithm can be further extended in a number
of interesting directions. For example, adaptive sampling
strategies could potentially further improve the behavior of
the algorithm. Extensions to prediction problems with het-
eroskedastic noise could also be interesting to pursue.

Acknowledgments. This work was supported by NSF
DMS-2023166, CCF-2019844, DMS-1839371, CIFAR-
LMB, and faculty research awards.

6. REFERENCES

[1] Axel Ruhe and Per Åke Wedin, “Algorithms for separable nonlinear
least squares problems,” SIAM review, vol. 22, no. 3, pp. 318–337,
1980.

[2] T Wiberg, “Computation of principal components when data are miss-
ing,” in Proc. Second Symp. Computational Statistics, 1976, pp. 229–
236.

[3] Pei Chen, “Heteroscedastic low-rank matrix approximation by the
wiberg algorithm,” IEEE transactions on signal processing, vol. 56,
no. 4, pp. 1429–1439, 2008.

[4] Julian Besag, “Statistical analysis of non-lattice data,” Journal of the
Royal Statistical Society: Series D (The Statistician), vol. 24, no. 3, pp.
179–195, 1975.

[5] Susan A Murphy and Aad W Van der Vaart, “On profile likelihood,”
Journal of the American Statistical Association, vol. 95, no. 450, pp.
449–465, 2000.

[6] Pierre Ablin, Gabriel Peyré, and Thomas Moreau, “Super-efficiency
of automatic differentiation for functions defined as a minimum,” in
International Conference on Machine Learning. PMLR, 2020, pp. 32–
41.

[7] Kaiyi Ji, Junjie Yang, and Yingbin Liang, “Bilevel optimization: Con-
vergence analysis and enhanced design,” in Proceedings of the 38th
International Conference on Machine Learning, 2021, pp. 4882–4892.

[8] Corinne Jones, Representation Learning for Partitioning Problems,
Ph.D. thesis, University of Washington, 2020.

[9] Katuwal Rakesh and Ponnuthurai N Suganthan, “An ensemble of ker-
nel ridge regression for multi-class classification,” Procedia Computer
Science, vol. 108, pp. 375–383, 2017.

[10] Rémi Bardenet and Odalric-Ambrym Maillard, “Concentration in-
equalities for sampling without replacement,” Bernoulli, vol. 21, no.
3, pp. 1361–1385, 2015.

[11] Walter Baur and Volker Strassen, “The complexity of partial deriva-
tives,” Theoretical computer science, vol. 22, no. 3, pp. 317–330, 1983.

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” in Intelligent Signal Processing.
2001, pp. 306–351, IEEE Press.

[13] Alex Krizhevsky and Geoffrey Hinton, “Learning multiple layers of
features from tiny images,” Tech. Rep., University of Toronto, 2009.

[14] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striv-
ing for simplicity: The all convolutional net,” in International Confer-
enceon Learning Representations (Workshop Track), 2015.

[15] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala, “PyTorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems, pp.
8024–8035. 2019.

[16] Jeff Johnson, Matthijs Douze, and Hervé Jégou, “Billion-scale similar-
ity search with GPUs,” IEEE Transactions on Big Data, vol. 7, no. 3,
pp. 535–547, 2021.

[17] Dong C. Liu and Jorge Nocedal, “On the limited memory BFGS
method for large scale optimization,” Mathematical Programming, vol.
45, no. 3 (B), pp. 503–528, 1989.

[18] Diederik P Kingma and Jimmy Ba, “Adam: A method for stochastic
optimization,” in International Conference on Learning Representa-
tions, 2015.

[19] Olivier Devolder, François Glineur, and Yurii Nesterov, “First-order
methods of smooth convex optimization with inexact oracle,” Mathe-
matical Programming, vol. 146, no. 1, pp. 37–75, 2014.

A. PROOFS

To decompose the error of approximation of the gradient of the reduced objective by using a mini-batch, we define for θ ∈ Rp,
j ∈ {1, . . . , p}, gj = (∂φ(xi, θ)/∂θj)

n
i=1 and S ⊆ {1, . . . , n}, Uj,S = CovS(gj , z), Vj,S = CovS(gj , y), and the associated

tensors US = (Uj,S)pj=1, VS = (Vj,S)pj=1. We can then bound the approximation error from computing the gradient on a
mini-batch as follows.

Lemma A.1. Consider some parameters θ ∈ Rp, and some mini-batch S ⊆ {1, . . . , n} with |S| = m. Define the following
constants associated to θ, S,

a = ‖ES [z]− E[n][z]‖2, b = ‖ES [y]− E[n][y]‖2,
s = ‖ΣS − Σ[n]‖2, c = ‖CS − C[n]‖2,
u = ‖US − U[n]‖∗,2, v = ‖VS − V[n]‖∗,2,

where ‖U‖∗,2= sup‖z‖2≤1 ‖
∑p
j=1 zjUj‖∗, with ‖·‖∗ the nuclear norm. The approximation error of the gradient by the reduced

objective is bounded as ‖∇fS(θ)−∇f(θ)‖2 ≤ εθ,S = δθ,S + ηθ,S , where

δθ,S =
2`c

λ
+

√
m

4λ
`b+

m

4λ
`a+

√
n

λ

`(2rc+ s)

λ
+
n

λ

`sr

λ

ηθ,S =

√
m

4λ
(v + `b) +

m

4λ
(u+ `a). (3)

The approximation error of the gradient of the reduced objective ∇f(θ) by its approximation ∇fS(θ) on a mini-batch is
decomposed into (i) δθ,S the error of computing the classifier WS on the mini-batch instead of computing the classifier W over
the whole dataset; and (ii) ηθ,S the error of using only a subset of the points to back-propagate the gradient instead of using the
whole dataset.

Proof of Lemma 7.1. Let j ∈ {1, . . . , p}. Denote gj,i = ∂φ(xi, θ)/∂θj , µS = ES [z] and νS = ES [y] for S ⊆ {1, . . . , n}.
Recall that WS = (λ I +ΣS)−1CS . Note that by using the singular value decomposition of ZS/m, we have that ‖WS‖2 ≤
‖YS‖2/(2

√
λ) ≤

√
m/(2

√
λ), and similarly ‖W[n]‖2 ≤

√
n/(2
√
λ). We have

(∇fS(θ))j − (∇f(θ))j =
1

m

∑
i∈S

(W>S (zi − µS)− (yi − νS))>W>S gj,i −
1

n

n∑
i=1

(W>S (zi − µS)− (yi − νS))>W>S gj,i︸ ︷︷ ︸
ηj

+
1

n

n∑
i=1

[
(W>S (zi − µS)− (yi − νS))>W>S − (W>[n](zi − µ[n])− (yi − ν[n]))>W>[n]

]
︸ ︷︷ ︸

δ>i

gj,i,

We can then rewrite ηj as

ηj =
1

m

∑
i∈S

(W>S (zi − µS)− (yi − νS))>W>S (gj,i − ES [gj])−
1

n

n∑
i=1

(W>S (zi − µS)− (yi − νS))>W>S (gj,i − E[n][gj])

+ (W>S (µ[n] − µS) + ν[n] − νS)>W>S E[n][gj]

= Tr
((

(Uj,S − Uj,[n])WS − (Vj,S − Vj,[n])
)
W>S

)
+ (W>S (µ[n] − µS) + ν[n] − νS)>W>S E[n][gj].

Denoting then η = (ηj)
p
j=1, we have ‖η‖2 ≤

(
(u+ `a) 1

2

√
m
λ + v + `b

)
1
2

√
m
λ . On the other hand,

δi = WS(W>S (µ[n] − µS)− (ν[n] − νS)) +WS

(
(W>S −W>[n])(zi − µ[n])

)
+ (WS −W[n])

(
W>[n](zi − µ[n])− (yi − ν[n])

)
,

WS −W[n] = (λ I +ΣS)−1(CS − C[n]) + (λ I +ΣS)−1(Σ[n] − ΣS)(λ I +Σ[n])
−1C[n],

so ‖δi‖2 ≤
1

2

√
m

λ

(
1

2

√
m

λ
a+ b

)
+

2

λ

(√
n+
√
m

2
√
λ

r + 1

)(
c+

1

2

√
n

λ
s

)
,

where we used that ‖zi‖2 ≤ r, ‖yi‖2 ≤ 1 and ‖(λ I +Σ[n])
−1C[n]‖2 ≤

√
n/(2
√
λ) by eigendecomposition of Z[n]. Since

∇θφ(xi, θ) = (gj,i)
p
j=1, we have ‖∇fS(θ)−∇f(θ)‖2 ≤ ‖η‖2 + 1

n‖
∑n
i=1∇θφ(xi, θ)δi‖2 ≤ ‖η‖2 + ` 1n

∑n
i=1 ‖δi‖2 and the

result follows.

Lemma A.2. Consider mini-batches S to be subsets of size m chosen uniformly at random without replacement from
{1, . . . , n}. In that case, the mean-squared error of the approximation of the gradient can be upper-bounded as

E[ε2θ,S] ≤ qm
(
`2r2

λ2
+
m`2

λ
+
m2`2r2

λ2
+
n`2r4

λ3
+
n2`2r6

λ4
+
m`2

λ
+
m2`2r2

λ2
,

)
where qm = κ(n−m)/((n− 1)m) for κ a dimension-dependent constant.

Proof. Denote by aS , bS , . . . , vS the quantities defined in Lemma 7.1 where, e.g.. aS = a. Denote qm = (n−m)/((n−1)m).
From Lemma 7.3, we have that, for S a mini-batch of size m chosen uniformly at random without replacement that E[a2S] ≤
qmr

2, E[b2S] ≤ qm. We have that ΣS = 1
m

∑
i∈S(zi − µ[n])(zi − µ[n])

> + (µ[n] − µS)(µ[n] − µS)>. Hence denoting
ζi = (zi − µ[n])(zi − µ[n])

>, we have ‖ΣS − Σ‖22 ≤ 2‖ζS − ζ[n]‖2F + 4r2‖µS − µ[n]‖22. Hence we get that E[s2S] ≤ 4qmr
4.

Similarly, we have that E[c2S] ≤ 4qmr
2. For a tensor U = (U1, . . . , Up), we have that ‖U‖∗,2 ≤

∑p
j=1 ‖Uj‖∗. Hence

E[u2S] ≤ p
∑p
j=1 dES [‖U[S],j − U[n,j]‖2F] ≤ 4p2dqmr

2`2 and similarly E[v2S] ≤ 4p2 min{d, k}qm`2.

Lemma A.3. Let x1, . . . , xn ∈ X with X equipped with a scalar product 〈·, ·〉 and associated norm ‖ · ‖ and denote x̄ =
1
n

∑n
i=1 xi. Let S be a subset of size m chosen uniformly at random without replacement from {x1, . . . , xn}. Then

ES

∥∥∥∥∥ 1

m

∑
i∈S

xi − x̄

∥∥∥∥∥
2

≤ n−m
n− 1

1

mn

n∑
i=1

‖xi − x̄‖2 .

Proof. Consider without loss of generality x̄ = 0 s.t.
∑
j 6=i xj = −xi. Let S the set of subsets of size m in {1, . . . n}. We have

ES

∥∥∥∥∥ 1

m

∑
i∈S

xi

∥∥∥∥∥
2

=
1

m2
(
n
m

) ∑
S∈S

∑
i∈S
‖xi‖22 +

∑
i,j∈S
i 6=j

〈xi, xj〉

 =
1

m2
(
n
m

) n∑
i=1

 ∑
S∈S:S3i

‖xi‖22 +
∑
j 6=i

∑
S∈S:i,j3S

〈xi, xj〉

The right hand side is then equal to (

(
n−1
m−1

)
−
(
n−2
m−2

)
)/(m2

(
n
m

)
)
∑
i ‖xi‖22 and the result follows.

Lemma A.4. Assume that φ is bounded, Lipschitz-continuous and smooth such that

r = sup
θ∈Rp,x∈X

‖φ(x, θ)‖2, ` = sup
θ∈Rp,x∈X

‖∇θφ(x, θ)‖2, L= sup
θ,θ′∈Rp,x∈X

‖∇θφ(x, θ)−∇θφ(x, θ′)‖2
‖θ−θ′‖2

are finite for X = {x1, . . . , xn}. Then the reduced objective f(θ) defined in (??) for a squared loss and a squared penalty is L̃
smooth with

L̃ ≤
√
n

λ

(
L+

`2(r(2+
√
n) + 2

√
λ−1)

λ

)
+

2`2
√
n

λ
+
n

2λ

(
Lr+`2

(
2b2

λ
+1

))
.

Estimation of the smoothness constant. Let θ, θ′ ∈ Rp, denote∇h[n](Φ(X, θ)) = (v1, . . . , vn)> ∈ Rn×d, gj,i = ∂φ(xi, θ)/∂θj
and denote with superscripts ′ quantities corresponding to computations with θ′. We have that (∇f(θ))j − (∇f(θ′))j =
1
n

∑n
i=1 v

>
i (gj,i−g′j,i)+ 1

n

∑n
i=1(vi−v′i)>g′j,i, hence ‖∇f(θ)−∇f(θ′)‖2 ≤ L 1

n

∑n
i=1 ‖vi‖2‖θ−θ′‖2+` 1n

∑n
i=1 ‖vi−v′i‖2.

We have vi = W[n](W
>
[n](zi − µ[n]) − (yi − ν[n])) where W[n], µ[n], zi are defined from Φ(X, θ). Hence ‖vi‖2 ≤√

n
λ

(
1
2

√
n
λ b+ 1

)
. Now we have, denoting for simplicity µ = µ[n], ν = ν[n],

vi − v′i = (W −W ′)(yi − ν) +WW>(zi − µ)−W ′W ′>(z′i − µ′) ,

WW>(zi − µ)−W ′W ′>(z′i − µ′) = (W −W ′)>W>(zi − µ) +W ′(W −W ′)>(zi − µ) +W ′W ′
>

(zi − µ+ z′i − µ′) ,
W −W ′ = (λ I +Σ)−1(C − C ′) + (λ I +Σ)−1(Σ′ − Σ)(λ I +Σ′)−1C ′ ,

hence by bounding each term we get that the smoothness of the reduced objective can be estimated as supθ,θ′∈Rp
‖∇f(θ)−∇f(θ′)‖2

‖θ−θ′‖2 ≤
L̃ with L̃ defined in the claim.

Theorem A.5. Assume that the reduced objective f defined in (??) for a squared loss and a squared penalty is L-smooth. Then
for any choice of mini-batches, an approximate gradient descent using mini-batch approximations (1) with step size τ ≤ 1/(2L)
satisfies

min
i∈{0,...,k−1}

‖∇f(θi)‖2 ≤ c1
f(θ0)− f∗

τk
+
c2
k

k−1∑
i=0

ε2θi,Si
,

where f∗ = minθ∈Rp f(θ), c1, c2 are universal constants and εθ,S is defined in Lemma 7.1.
If the mini-batches S are subsets of size m chosen uniformly at random without replacement from {1, . . . , n}, then an

approximate gradient descent using mini-batch approximations (1) with step size τ ≤ 1/(2L) satisfies

min
i∈{0,...,k−1}

E‖∇f(θi)‖2 ≤ c1
f(θ0)− f∗

τk
+O

(
qmn

2`2r6

λ4

)
where qm = κ(n−m)/((n− 1)m) and c1 is a universal constant.

Proof. The first claim is a corollary of Lemma 7.6 akin to the results of [19]. For the second claim, it suffices to note that,
following the proof of Lemma 7.6 in Eq. (4),

E[f(θi+1)−f(θi)] ≤ −c1τE[‖∇f(θi)‖22] + c2τES1,...,Si−1 [ESi [ε
2
θi,Si
|S1, . . . , Si−1]]

for c1, c2 some universal constants and the second term can be bounded using (2). Summing over i for i ∈ {0, . . . , k − 1} and
rearranging the terms gives the result.

Lemma A.6. Let f : Rd → R be an L-smooth function. Consider an ε-approximate gradient descent on f with step size
τ ≤ 1/(2L), i.e., xk+1 = xk − τ∇̂f(xk), where ‖∇̂f(xk) − ∇f(xk)‖2 ≤ εk. After k iterations, this method satisfies, for
c1, c2 two universal constants,

min
i∈{0,...,k−1}

‖∇f(xi)‖22 ≤ c1
f(x0)−minx∈Rd f(x)

τk
+
c2
k

k−1∑
i=0

ε2i .

Proof. Denote gk = ∇̂f(xk) − ∇f(xk) for all k ≥ 0. By L-smoothness of the objective, the iterations of the approximate
gradient descent satisfy

f(xk+1) ≤ f(xk) +∇f(xk)>(xk+1 − xk) +
L

2
‖xk+1 − xk‖22

= f(xk)− τ‖∇f(xk)‖22 − τ∇f(xk)>gk +
Lτ2

2
‖∇f(xk) + gk‖22

= f(xk)− τ
(

1− Lτ

2

)
‖∇f(xk)‖22 +

Lτ2

2
‖gk‖22 + τ(Lτ − 1)∇f(xk)>gk

≤ f(xk)− τ
(

1− Lτ

2

)
‖∇f(xk)‖22 +

Lτ2

2
‖gk‖22 + τ(1− Lτ)‖∇f(xk)‖2‖gk‖2 ,

where in the last inequality we bounded the absolute value of the last term and used that τL ≤ 1. Now we use that for any
a, b ∈ R and θ > 0, 2ab ≤ θa2+θ−1b2, which gives for θ > 0, a =

√
τ(1− Lτ)/2‖∇f(xk)‖2 and b =

√
τ(1− Lτ)/2‖gk‖2,

f(xk+1) ≤ f(xk)− τ
(

1− Lτ + θ(1− Lτ)

2

)
‖∇f(xk)‖22 +

Lτ2 + θ−1τ(1− Lτ)

2
‖gk‖22 .

Using 0 ≤ Lτ ≤ 1/2, θ = 1/4 and ‖gk‖22 ≤ ε2k, we get

f(xk+1) ≤ f(xk)− 11

16
τ‖∇f(xk)‖22 + 2τε2k. (4)

Rearranging the terms, summing from i = 0, . . . , k − 1, taking the minimum, and dividing by k, we get the result.

