
On the Convergence to Stationary Points of the
Iterative Linear Exponential Quadratic Gaussian Algorithm

Vincent Roulet1, Maryam Fazel2, Siddhartha Srinivasa3, Zaid Harchaoui1,

1 Department of Statistics, University of Washington, Seattle
2 Department of Electrical and Computer Engineering, University of Washington, Seattle

3 Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle

October 1, 2019

Abstract

We present a convergence analysis of the iterative lin-
ear exponential quadratic Gaussian algorithm from a first-
order optimization viewpoint. The iterative linear expo-
nential quadratic Gaussian algorithm is a classical method
for risk-sensitive nonlinear control. We identify the objec-
tive that the algorithm actually minimizes and show how
the addition of a proximal term guarantees convergence to
a stationary point.

Introduction

We present a convergence analysis of the classical it-
erative linear quadratic exponential Gaussian controller
(ILEQG) [Whittle, 1981] for finite-horizon risk-sensitive
or safe nonlinear control. The ILEQG algorithm is partic-
ularly popular in robotics applications [Li and Todorov,
2007] and can be seen as a risk-sensitive or safe coun-
terpart of the iterative linear quadratic Gaussian (ILQG)
algorithm recently analyzed by Roulet et al. [2019]. We
adopt here the viewpoint of the modern complexity anal-
ysis of first-order optimization algorithms.

We address the following questions: (i) what is the con-
vergence rate to stationary point of ILEQG? (ii) how can
we set the step-size to guarantee a decreasing objective
along the iterations? The analysis we present here sheds
light on these questions by highlighting the objective min-
imized by ILEQG which is a Gaussian approximation of a
risk-sensitive cost around the linearized trajectory. We un-
derscore the importance of the addition of a proximal reg-
ularization component for ILEQG to guarantee a worst-
case convergence to a stationary point of the objective.

The main result of the paper is Theorem 2.5, where a

sufficient decrease condition to choose the strength of the
proximal regularization is given. The result also yields
a complexity bound in terms of calls to a dynamic pro-
gramming procedure implementable in a ”differentiable
programming” framework that is a computational frame-
work equipped with an automatic differentiation software
library. We illustrate the variant of the iterative regular-
ized linear quadratic exponential Gaussian controller we
recommend on simple risk-sensitive nonlinear control ex-
amples.

Related work. The linear exponential quadratic Gaus-
sian algorithm is a fundamental algorithm for risk-
sensitive or safe control [Whittle, 1981, Jacobson, 1973,
Speyer et al., 1974]. The algorithm builds upon a risk-
sensitive measure, a less conservative and more flexible
framework than the H∞ theory also used for robust con-
trol; see [Glover and Doyle, 1988, Hassibi et al., 1999,
Helton and James, 1999] and references therein. An
excellent review of the classical results in abstract dy-
namic programming and control theory, in particular for
risk-sensitive control, can be found in [Bertsekas, 2018].
Risk-measures were analyzed as instances of the opti-
mized certainty equivalent applied to specific utility func-
tions; see [Ben-Tal and Teboulle, 1986, 2007] for a re-
cent overview. Risk-averse model predictive control was
also studied to account for ambiguity in the knowledge of
the underlying probability distribution [Sopasakis et al.,
2019].

Algorithms for nonlinear control problems are usually
derived by analogy to the linear case, which is solved
in linear time with respect to the horizon by dynamic
programming [Bellman, 1971]. In particular, the itera-
tive linear quadratic regulator (ILQR) and iterative lin-
ear quadratic Gaussian (ILQG) algorithms are usually in-

1

formally motivated as iterative linearization algorithms
[Li and Todorov, 2007]. A risk-sensitive variant with a
straightforward optimization algorithm without theoreti-
cal guarantees was considered in [Farshidian and Buchli,
2015, Ponton et al., 2016].

On the first-order optimization front, optimization sub-
problems such as Newton or Gauss-Newton-steps were
shown to be implementable by using dynamic program-
ming in classical works [De O. Pantoja, 1988, Dunn and
Bertsekas, 1989, Sideris and Bobrow, 2005]. Iterative lin-
earized methods such as ILQR or ILQG were recently
analyzed as Gauss-Newton-type algorithms and improved
using proximal regularization and acceleration by extrap-
olation in [Roulet et al., 2019]. This work shares the same
viewpoint and establishes worst-case complexity bounds
for iterative linear quadratic exponential Gaussian con-
troller (ILEQG) algorithms.

All proofs and notations are provided in the
Appendix. The companion code is available at
https://github.com/vroulet/ilqc.

1 Risk-sensitive control
Problem formulation. We consider discretized control
problems stemming from continuous time settings with finite-
horizon, see Appendix E for the discretization step. Those
are off-line control problems used for example at each step of
a model predictive control framework. We focus on the con-
trol of a trajectory of length τ composed of state variables
x1, . . . , xτ ∈ Rd and controlled by parameters u0, . . . , uτ−1 ∈
Rp through dynamics ψt perturbed by i.i.d. white noise wt ∼
N (0, σ2 Iq) such that

x0 = x̂0, xt+1 = ψt(xt, ut, wt), (1)

for t = 0, . . . , τ − 1, where x̂0 is a fixed starting point and
the functions ψt : Rd × Rp × Rq → Rd are assumed to be
continuously differentiable and bounded. Precise Assumptions
for convergence are detailed in Sec. 2.

Optimality is measured through convex costs ht, gt, on the
state and control variables xt, ut respectively, defining the ob-
jective

h(x̄) + g(ū) =

τ∑
t=1

ht(xt) +

τ−1∑
t=0

gt(ut), (2)

where x̄ = (x1; . . . ;xτ) ∈ Rτd is the trajectory, ū =
(u0; . . . ;uτ−1) ∈ Rτp is the command, h(x̄) =

∑τ
t=1 ht(xt)

and g(ū) =
∑τ−1
t=0 gt(ut), and in the following we denote by

w̄ = (w0; . . . ;wτ−1) ∈ Rτq the noise. For a given command
ū, the dynamics in (1) define a probability distribution on the
trajectories x̄ that we denote p(x̄; ū).

The standard objective consists in minimizing the expected
cost minū∈Rτp Ex̄∼p(·;ū) [h(x̄)] + g(ū), where x̄ is a random

x

f θ
(x

)

θ = 0

θ = 1

θ = 20

Figure 1: Effect of the risk-sensitive parameter θ
for fθ(x) = 1

θ
log Ew∼N (0,1)

[
exp θF (x+w)

]
with F illustrated by the black line.

variable following the model (1). We focus on risk-sensitive ap-
plications by minimizing

min
ū∈Rτp

1

θ
log Ex̄∼p(·;ū)

[
exp θh(x̄)

]
+ g(ū), (3)

for a given positive parameter θ > 0. Since the dynamics are
bounded, the risk-sensitive objective is well defined for any ū.
The risk-sensitive objective (3) seeks to minimize not only the
expected objective but also higher moments as can be seen by
expanding it around θ = 0,

1

θ
log Ex̄∼p(·;ū) [exp θh(x̄)] = Ex̄∼p(·;ū) [h(x̄)] (4)

+
θ

2
Varx̄∼p(·;ū) [h(x̄)] +O(θ2),

which also shows that for θ → 0 we retrieve the expected cost.
In Fig. 1 we illustrate the smoothness effect of the risk-sensitive
objective, which, for larger values of θ, tends to select the most
stable minimizers, i.e., the ones with the largest valley, see [Dvi-
jotham et al., 2014] for a detailed discussion.

Linear Quadratic Exponential Gaussian control. The
resolution of non-linear risk-sensitive control problems rest on
the linear quadratic case whose properties are recalled below.

Proposition 1.1. Consider quadratic objectives and linear dy-
namics defined by

ht(xt) =
1

2
x>t Htxt + h̃>t xt, gt(ut) =

1

2
u>t Gtut + g̃>t ut,

xt+1 = Atxt +Btut + Ctwt, (5)

where Ht � 0, Gt � 0, wt ∼ N (0, σ2 Iq) and denote by
H, B̃, C̃, x̃0 the matrices and vector such that for any trajectory
x̄, H = ∇2h(x̄), x̄ = B̃ū+ C̃w̄ + x̃0. We have that

(i) the risk sensitive control problem (3) is equivalent to

min
ū∈Rτp

sup
w̄∈Rτq

x̄∈Rτd

τ∑
t=1

1

2
x>t Htxt + h̃>t xt +

τ−1∑
t=0

1

2
u>t Gtut + g̃>t ut

−
τ−1∑
t=0

1

2θσ2
‖wt‖22 (6)

subject to xt+1 = Atxt +Btut + Ctwt

x0 = x̂0,

2

(ii) if (θσ2)−1 < λmax(C̃>HC̃) the risk-sensitive control
problem is infeasible,

(iii) if (θσ2)−1 > λmax(C̃>HC̃), the risk-sensitive control
problem can be solved analytically by dynamic program-
ming.

The resolution of the control problem by dynamic program-
ming tracks if the problem is strongly concave in w̄ when per-
forming the computations, otherwise the problem is not feasible.
Each cost-to-go function is indeed a quadratic whose positive-
definiteness determines the feasibility of the problem. The de-
tailed implementation is provided in Appendix B.

Iterative Linearized Quadratic Exponential Gaussian.
A common method to tackle the non-linear control prob-
lem is the Iterative Linearized Quadratic Exponential Gaussian
(ILEQG) algorithm, that (i) linearizes the dynamics and approx-
imates quadratically the objectives around the current command
and associated exact trajectory, (ii) solves the associated linear
quadratic problem to get a descent direction, (iii) moves along
the descent direction using a line-search. Formally, at a given
command ū(k) with associated exact trajectory x̄(k) given by
x

(k)
0 = x̂0, x(k)

t+1 = ψt(x
(k)
t , u

(k)
t , 0), a descent direction is

given by v̄∗ solution, if it exists, of

min
v̄∈Rτp

sup
w̄∈Rτp

ȳ∈Rτd

τ∑
t=1

(
1

2
y>t Htyt + h̃>t yt

)
(7)

+

τ−1∑
t=0

(
1

2
v>t Gtvt + g̃>t vt

)
−
τ−1∑
t=0

1

2θσ2
‖wt‖22

subject to yt+1 = Atyt +Btvt + Ctwt

y0 = 0,

with Ht=∇2ht(x
(k)
t), h̃t=∇ht(x(k)

t), Gt=∇2gt(u
(k)
t), g̃t =

∇gt(u(k)
t), At=∇xψt(x(k)

t , u
(k)
t , 0)>,Bt=∇uψt(x(k)

t , u
(k)
t , 0)>

Ct=∇wψt(x(k)
t , u

(k)
t , 0)>. The next command is given by

ū(k+1) = ū(k) + γv̄∗,

where γ is a step-size chosen by line-search. The complete
pseudo-code is presented in Appendix C. The objective of this
work is to understand the relevance of this method and to im-
prove its implementation by answering the following questions:

1. Does ILEQG ensure the decrease of the risk-sensitive ob-
jective? If yes, what is its rate of convergence?

2. How can the step-size be chosen to ensure the monotonic-
ity of the algorithm in a principled way?

2 Iterative linearized risk-sensitive
control

2.1 Model minimization
We analyze the ILEQG method as a model-minimization
scheme. To ease the exposition, we consider the case of addi-

tive noise, i.e., dynamics of the form,

x0 = x̂0, xt+1 = φt(xt, ut + wt). (8)

for bounded continuously differentiable dynamics φt : Rd ×
Rp → Rd. The algorithm and its interpretation can readily be
extended to the general case (1). The analysis would require
specific assumptions on the derivative of the dynamics w.r.t. the
noise.

First, we consider the exact trajectory as a function x̃ :
Rτp → Rτd of the control variables, decomposed as x̃(ū) =
(x̃1(ū); . . . ; x̃τ (ū)) where

x̃1(ū) = φ0(x̂0, u0), x̃t+1(ū) = φt(x̃t(ū), ut), (9)

such that the noisy trajectory is given by x̃(ū + w̄). The risk
sensitive objective (3) can then be written as

min
ū∈Rτp

fθ(ū) = ηθ(ū) + g(ū), (10)

with ηθ(ū) =
1

θ
log Ew̄

[
exp θh

(
x̃(ū+ w̄)

)]
,

where, here and thereafter, w̄ ∼ N (0, σ2 Iτp) unless specified
differently. Now, at a current command ū, for a given control
deviation v̄, the random trajectory x̃(ū+ v̄+w̄) is approximated
as a perturbed trajectory of x̃(ū), by

x̃(ū+ v̄ + w̄) ≈ x̃(ū) +∇x̃(ū)>(v̄ + w̄). (11)

The objective is then approximated as fθ(ū + v̄) ≈ mfθ (ū +
v̄; ū), where

mfθ (ū+v̄; ū),
1

θ
log Ew̄ exp θqh

(
x̄+∇x̃(ū)>v̄+∇x̃(ū)>w̄; x̄

)
+ qg(ū+ v̄; ū), (12)

qh(x̄+ȳ; x̄) , h(x̄)+∇h(x̄)>ȳ+ȳ>∇2h(x̄)ȳ/2, qg(ū+v̄; ū)
is defined similarly and x̄ = x̃(ū) is the exact trajectory. As
the following proposition will clarify, the descent direction com-
puted by ILEQG in (7) is given by minimizing directly the model
mfθ . Yet, from an optimization viewpoint, a regularization term
must be added to this minimization to ensure that the solutions
stay in a region where the model is valid. Formally, we consider
a regularized variant of ILEQG, we call RegILEQG, that starts
at a point ū0 and defines the next iterate as

ū(k+1) = ū(k)+arg min
v̄∈Rτp

{
mfθ (ū(k) + v̄; ū(k)) +

1

2γk
‖v̄‖22

}
,

(RegILEQG)
where γk is the step-size: the smaller γk is, the closer the solu-
tion is to the current iterate. The following proposition shows
that the minimization step (RegILEQG) amounts to a linear
quadratic exponential Gaussian risk-sensitive control problem.

Proposition 2.1. The model minimization step (RegILEQG) is
given as ū(k+1) = ū(k) + v̄∗ where v̄∗ is the solution, if it exists,

3

of

min
v̄∈Rτp

sup
w̄∈Rτp

ȳ∈Rτd

τ∑
t=1

(
1

2
y>t Htyt + h̃>t yt

)

+

τ−1∑
t=0

(
1

2
v>t (Gt + γ−1

k Ip)vt + g̃>t vt

)
(13)

−
τ−1∑
t=0

1

2θσ2
‖wt‖22

subject to yt+1 = Atyt +Bt(vt + wt)

y0 = 0,

where x
(k)
t = x̃t(ū

(k)) At = ∇xφt(x(k)
t , u

(k)
t)>, Bt =

∇uφt(x(k)
t , u

(k)
t)>, Ht = ∇2ht(x

(k)
t), h̃t = ∇ht(x(k)

t),
Gt = ∇2gt(u

(k)
t), g̃t = ∇gt(u(k)

t).

Each model-minimization step can then be performed by dy-
namic programming. The overall algorithm is presented in
Appendix C. If the costs depend only on the final state, i.e.,
h(x̄) = hτ (xτ), the steps can be computed more efficiently
by making calls to automatic differentiation oracles, see Ap-
pendix C for more details.

2.2 Convergence analysis
We analyze the behavior of the regularized variant of ILEQG for
quadratic convex costs ht, gt, a common setting in applications.
This algorithm is then based on two different approximations:

(i) the random trajectories are approximated by Gaussians de-
fined by the linearization of the dynamics,

(ii) the non-linear control of the trajectory is approximated a
linear control defined by the linearization of the dynamics,

The first approximation makes the algorithm work on a surrogate
of the true risk-sensitive objective. By identifying this surrogate,
we get criteria for the choice of the step-size γ.

Approximate risk-sensitive cost. By approximating the
noisy trajectory by a Gaussian variable using first-order informa-
tion of the trajectory, we define the approximated risk-sensitive
objective as follows

f̂θ(ū) = η̂θ(ū) + g(ū),

where η̂θ(ū) =
1

θ
log Ew̄ exp[θh(x̃(ū) +∇x̃(ū)>w̄)].

The approximated risk-sensitive objective is essentially the log-
partition function of a Gaussian distribution as shown in the fol-
lowing proposition.

Proposition 2.2. For ū ∈ Rτp with x̄ = x̃(ū), if

σ−2 Iτp � θ∇x̃(ū)∇2h(x̄)∇x̃(ū)>, (14)

the approximated risk sensitive cost is defined and is the scaled

log-partition function of

p̂(w̄; ū) = exp

(
θh(x̃(ū)+∇x̃(ū)>w̄)− 1

2σ2
‖w̄‖22−θη̂θ(ū)

)
,

(15)

which is the density of a GaussianN (w̄∗,Σ) with

w̄∗ = θΣXh̃, Σ = (σ−2 Iτp−θXHX>)−1, (16)

where X = ∇x̃(ū), h̃ = ∇h(x̄), H = ∇2h(x̄) and x̄ = x̃(ū).
Therefore, the approximated risk-sensitive loss can be computed
analytically.

The approximation error induced by the linearization is il-
lustrated in Sec. 3. Note that the risk-sensitive approximation
shares similar properties as the original function in (4), since it
can be extended around θ = 0 to

η̂θ(ū) = h(x̃(ū)) + Ew̄∼p̂(·;ū) w̄
>∇x̃(ū)∇2h(x̃(ū))∇x̃(ū)>w̄

+
θ

2
Varw̄∼p̂(·;ū) h(x̃(ū) +∇x̃(ū)>w̄)) +O(θ2).

Namely, it accounts not only for the cost of the exact trajectory
but also for the variance defined by the linearized trajectories.
Provided that condition (14) holds, the gradient of the approxi-
mated risk-sensitive cost reads (see Appendix D)

∇η̂θ(ū) = Ew̄∼p̂(·;ū)(∇x̃(ū)+∇2x̃(ū)[·, w̄, ·])

×∇h(x̃(ū)+∇x̃(ū)>w̄),

where p̂(·; ū) is defined in (15). Denote the truncated gradient
of the approximated risk-sensitive cost

∇̂η̂θ(ū) = Ew̄∼p̂(·;ū)∇x̃(ū)∇h(x̃(ū) +∇x̃(ū)>w).

We link the model-minimization steps of the regularized variant
of ILEQG to the truncated gradient in the following proposition.

Proposition 2.3. Consider (RegILEQG) at iteration k, if con-
dition (14) holds on ū(k), the step is defined and reads

ū(k+1) = ū(k)−(G+ γ−1
k Iτp +XHX>+θV)−1

× (∇g(ū(k)) + ∇̂η̂θ(ū(k))),

where

V = Varw̄∼p̂(·;ū(k))∇x̃(ū(k))∇h(x̃(ū(k)) +∇x̃(ū(k))>w)

= XHX>(σ−2 Iτp−θXHX>)−1XHX>

and X=∇x̃(ū(k)), H=∇2h(x̄), G=∇2g(ū(k)), x̄=x̃(ū(k)).

Convergence to stationary points. We make the follow-
ing assumptions for our analysis

Assumption 2.4.
1. The dynamics φt are twice differentiable, bounded,

Lipschitz, smooth such that the trajectory function x̃
is also twice differentiable, bounded, Lipschitz and

4

smooth. Denote by Lx̃ and `x̃ the Lipschitz continu-
ity and smoothness constants respectively of x̃ and de-
fine Mx̃ = maxū∈τp dist(x̃(ū), X∗), where X∗ =
arg minx̄∈Rτd h(x̄).

2. The costs h and g are convex quadratics with smoothness
constants Lh, Lg .

3. The risk-sensitivity parameter is chosen such that σ̃−2 =
σ−2−θLh`2x̃ > 0, which ensures that condition (14) holds
for any ū ∈ Rτp.

The following proposition shows stationary convergence for
the regularized variant of ILEQG as an optimization method of
the approximated risk-sensitive loss. The additional constant
term is due to the truncation of the gradient of the approximated
risk-sensitive cost.

Theorem 2.5. Under Ass. 2.4, suppose that the step-sizes
of (RegILEQG) are chosen such that

f̂θ(ū
(k+1)) ≤ mfθ (ū(k+1); ū(k)) +

1

2γk
‖ū(k+1) − ū(k)‖22,

(17)
with γk ∈ [γmin, γmax]. Then, the approximated objective f̂θ
decreases and after K iterations we have

min
k=0,...,K−1

‖∇f̂θ(ū(k))‖2 ≤ L

√
2(f̂θ(ū(0))− f̂θ(ū(K)))

K
+δ,

where L = maxγ∈[γmin,γmax]
√
γ(Lg + γ−1 + (σ̃/σ)2`2x̃Lh),

δ = θσ̃2L2
hLx̃`x̃M

2
x̃ + θ2σ̃4L3

hLx̃`
3
x̃M

2
x̃ + τpσ̃2LhLx̃`x̃.

Previous proposition gives a criterion (17) for line-searches.
We show in Appendix D that there exists a step-size γ̂ such that
condition (17) is satisfied along the iterations. With this step-
size, the number of steps to get an ε + δ stationary point is at
most

2γ̂(Lg + γ̂−1 + (σ̃/σ)2`2x̃Lh)2(f̂θ(ū
(0))− f̂∗θ)

ε2
.

3 Numerical experiments
Control settings. We apply the risk-sensitive framework to
two classical continuous time control settings: swinging-up a
pendulum and moving a two-link arm robot, both detailed in
Appendix E. Their discretization leads to dynamics of the form

x1,t+1 = x1,t + δx2,t

x2,t+1 = x2,t + δf(x1,t, x2,t, ut)
(18)

for t = 0, . . . τ − 1, where x1, x2 describe the position and the
speed of the system respectively, f defines the dynamics derived
by Newton’s law, δ is the time step, u is a force that controls the
system.

Noise modeling. The risk-sensitive cost is defined by an ad-
ditional noisy force applied to the dynamics. Formally, the dis-
cretized dynamics (18) are modified as

x1,t+1 = x1,t + δx2,t

x2,t+1 = x2,t + δf(x1,t, x2,t, ut + wt)
(19)

0.0 2.5 5.0 7.5 10.0
Iterations

2

4

6

R
is

k-
se

ns
it

iv
e

co
st RegILEQG

ILEQG

0.0 2.5 5.0 7.5 10.0
Iterations

2

4

6

A
pp

ro
x.

ri
sk

-s
en

si
ti

ve
co

st

RegILEQG

ILEQG

Figure 2: Convergence of iterative linearized methods,
RegILEQG and ILEQG, on the pendulum problem.

0.0 2.5 5.0 7.5 10.0
Iterations

2

4

6

A
pp

ro
x.

ri
sk

-s
en

si
ti

ve
co

st

Monte Carlo

Gaussian approx.

0.0 2.5 5.0 7.5 10.0
Iterations

0

1

2

A
pp

ro
x.

gr
ad

ie
nt

no
rm Monte Carlo

Gaussian approx.

Figure 3: Risk-sensitive and gradient approximations.

0.0 2.5 5.0 7.5 10.0
Disturbance noise strength

0

10

20

30

T
es

t
co

st

θ = 0

θ = 0.1

θ = 0.2

θ = 0.3

0.0 2.5 5.0 7.5 10.0
Disturbance noise strength

0.00

0.02

0.04

0.06

0.08

T
es

t
co

st

θ = 0

θ = 1

Figure 4: Robustness of controllers against disturbance noise.
Left: pendulum. Right: robot arm.

for t = 0, . . . , τ − 1, where wt ∼ N (0, σ2 Ip) and σ is chosen
to avoid chaotic behavior, see Appendix E.

We test the optimized expected or risk-sensitive costs on a
setting where the dynamics are perturbed at a given time tw by a
force of amplitude ρ. This models the robustness of the control
against kicking the robot. Formally, we analyze the performance
of the solutions of the expected cost (denoted θ = 0) or the risk-
sensitive cost (3) on dynamics of the form

x1,t+1 = x1,t + δx2,t

x2,t+1 = x2,t + δf(x1,t, x2,t, ut + ρ1(t = tw))

for t = 0, . . . , τ − 1, where ρ ∼ N (0, σtest Ip) with the same
cost h(x̄) computed as an average on n = 100 simulations. We
call this cost the test cost.

3.1 Results
All detailed parameters are provided in Appendix E.

Convergence. In Fig. 2 we compare the convergence on the
pendulum problem of RegILEQG and ILEQG. For both algo-
rithms, we use a constant step-size sequence tuned after a burn-
in phase of 5 iterations on a grid of step-sizes 2i for i ∈ [−5, 10].

5

The approximated risk-sensitive loss was used to tune the step-
sizes. The best step-sizes found were 0.5 for ILEQG and 16 for
RegILEQG. We plot the minimum values obtained until now, as
the true function can be approximated. We observe that both
ILEQG and RegILEQG minimize well the approximated risk-
sensitive cost. Yet, the regularized variant provides smoother
convergence. We leave as future work the implementation of
line-search procedures as done for Levenberg-Marquardt meth-
ods.

Risk-sensitive cost approxiamtion. In Fig. 3, we show
f̂θ(ū

(k)), ‖∇f̂θ(ū(k))‖2 and fθ(ū(k)), ‖∇fθ(ū(k))‖2 approxi-
mated by Monte-Carlo forN = 100 samples along the iterations
of the RegILEQG method for the pendulum (same experiment as
in Fig. 2) for 10 runs of the Monte-Carlo approximation. We ob-
serve that the approximation f̃θ(ū(k)) is fine compared to the
approximation by Monte-Carlo. The sequence of compositions
defining the trajectory leads to highly non-smooth functions (i.e.
large smoothness constants), which contributes to the high vari-
ance of gradients computed by Monte-Carlo.

Robustness. In Fig. 4, we plot the test cost obtained by the
expected or risk-sensitive optimizers on the movement perturbed
by a dirac of increasing strength. We use our RegILEQG algo-
rithm with constant-step-size tuned after a burn-in phase. The
risk-sensitive approach provides smaller costs against perturbed
trajectories. On the two-link-arm problem, we did not observe
significant changes when varying the risk-sensitivity parameter.
We leave the analysis of the choice of the parameter for future
work.

4 Conclusion
We dissected the ILEQG algorithm to understand its correct im-
plementation, this revealed: (i) the objective it minimizes, that
is not the risk-sensitive cost but an approximation of it, (ii) the
necessary introduction from an optimization viewpoint of a reg-
ularization inside the step, (iii) a sufficient decrease condition
that ensures proven stationary convergence to a near-stationary
point.

Acknowledgements
This work was funded by NIH R01 (#R01EB019335), NSF CPS
(#1544797), NSF NRI (#1637748), NSF CCF (#1740551), NSF
DMS (#1839371), DARPA Lagrange grant FA8650-18-2-7836,
the program Learning in Machines and Brains of CIFAR, ONR,
RCTA, Amazon, Google, Honda and faculty research awards

References
R. Bellman. Introduction to the mathematical theory of control pro-

cesses, volume 2. Academic press, 1971.

A. Ben-Tal and M. Teboulle. Expected utility, penalty functions, and
duality in stochastic nonlinear programming. Management Science,
32(11):1445–1466, 1986.

A. Ben-Tal and M. Teboulle. An old-new concept of convex risk mea-
sures: The optimized certainty equivalent. Mathematical Finance, 17
(3):449–476, 2007.

D. P. Bertsekas. Abstract dynamic programming. Athena Scientific, 2nd
edition, 2018.

J. De O. Pantoja. Differential dynamic programming and Newton’s
method. International Journal of Control, 47(5):1539–1553, 1988.

J. C. Dunn and D. P. Bertsekas. Efficient dynamic programming im-
plementations of Newton’s method for unconstrained optimal control
problems. Journal of Optimization Theory and Applications, 63(1):
23–38, 1989.

K. Dvijotham, M. Fazel, and E. Todorov. Universal convexification via
risk-aversion. In Proceedings of the Thirtieth Conference on Uncer-
tainty in Artificial Intelligence, pages 162–171, 2014.

F. Farshidian and J. Buchli. Risk sensitive, nonlinear optimal control:
Iterative linear exponential-quadratic optimal control with Gaussian
noise. arXiv preprint arXiv:1512.07173, 2015.

K. Glover and J. C. Doyle. State-space formulae for all stabilizing con-
trollers that satisfy an h∞-norm bound and relations to relations to
risk sensitivity. Systems & Control Letters, 11(3):167–172, 1988.

B. Hassibi, A. H. Sayed, and T. Kailath. Indefinite-Quadratic Estima-
tion and Control: A Unified Approach to H2 and H-infinity Theories,
volume 16. SIAM, 1999.

J. W. Helton and M. R. James. Extending H-infinity control to nonlin-
ear systems: Control of nonlinear systems to achieve performance
objectives, volume 1. SIAM, 1999.

D. Jacobson. Optimal stochastic linear systems with exponential perfor-
mance criteria and their relation to deterministic differential games.
IEEE Transactions on Automatic control, 18(2):124–131, 1973.

W. Li and E. Todorov. Iterative linear quadratic regulator design for non-
linear biological movement systems. In 1st International Conference
on Informatics in Control, Automation and Robotics, volume 1, pages
222–229, 2004.

W. Li and E. Todorov. Iterative linearization methods for approximately
optimal control and estimation of non-linear stochastic system. In-
ternational Journal of Control, 80(9):1439–1453, 2007.

Y. Nesterov. Introductory lectures on convex optimization: A basic
course, volume 87. Springer Science & Business Media, 2013.

B. Ponton, S. Schaal, and L. Righetti. On the effects of measurement
uncertainty in optimal control of contact interactions. In The 12th
International Workshop on the Algorithmic Foundations of Robotics
WAFR, 2016.

V. Roulet, S. Srinivasa, D. Drusvyatskiy, and Z. Harchaoui. Iterative
linearized control: Stable algorithms and complexity guarantees. In
Proceedings of the 36th International Conference on Machine Learn-
ing, 2019.

A. Sideris and J. E. Bobrow. An efficient sequential linear quadratic al-
gorithm for solving nonlinear optimal control problems. In Proceed-
ings of the American Control Conference, pages 2275–2280, 2005.

6

P. Sopasakis, D. Herceg, A. Bemporad, and P. Patrinos. Risk-averse
model predictive control. Automatica, 100:281–288, 2019.

J. Speyer, J. Deyst, and D. Jacobson. Optimization of stochastic linear
systems with additive measurement and process noise using exponen-
tial performance criteria. IEEE Transactions on Automatic Control,
19(4):358–366, 1974.

P. Whittle. Risk-sensitive linear/quadratic/Gaussian control. Advances
in Applied Probability, 13(4):764–777, 1981.

7

A Notations

A.1 Miscellaneous
We use semicolons to denote concatenation of vectors, namely for n d-dimensional vectors a1, . . . , an ∈ Rd, we have
(a1; . . . ; an) ∈ Rnd. The Kronecker product is denoted ⊗. For a sequence of matrices X1, . . . Xτ ∈ Rd×p we denote

diag(X1, . . . , Xτ) =


X1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 Xτ

 ∈ Rdτ×pτ .

the corresponding block diagonal matrix. For a set S ⊂ Rd and x ∈ Rd, denote dist(x, S)2 = miny∈Rd ‖x− y‖22. Given a density
function p : Rd → R+, such that

∫
Rd p(w)dw = 1 and a function f : Rd → Rp we denote

Ew∼p f(w) =

∫
Rd
f(w)p(w)dw.

For a matrixM ∈ Rd×d, we denote ‖M‖2 = supx∈Rd∗
x>Mx/‖x‖22 the spectral norm induced by the Euclidean norm. We denote

semi-definite positive matrices S ∈ Rd×d as S � 0 and denote λmax(S) = ‖S‖2 the maximal eigenvalue of S. For a matrix
A ∈ Rd×n we denote by A† the pseudo-inverse of A.

A.2 Tensors
For a tensor A = (ai,j,k)i∈{1,...,d}, j∈{1,...,n}, k∈{1,...,p} ∈ Rd×n×p, we denote Ai,·,· = (ai,j,k)j∈{1,...,n}, k∈{1,...,p} ∈ Rn×p

the matrix obtained by fixing the first index at i. Similarly we define A·,j,· ∈ Rd×p and A·,·,k ∈ Rd×n. A tensor A can be
represented as the list of matrices A = (A·,·,1, . . . ,A·,·,k). Given matrices P ∈ Rd×d

′
, Q ∈ Rn×n

′
, R ∈ Rp×p

′
, we denote

A[P,Q,R] =

(
p∑
k=1

Rk,1P
>A·,·,kQ, . . . ,

p∑
k=1

Rk,p′P
>A·,·,kQ

)
∈ Rd

′×n′×p′

If P,Q or R are identity matrices, we use the symbol ” · ” in place of the identity matrix. For example, we denote A[P,Q, Ip] =
A[P,Q, ·] =

(
P>A·,·,1Q, . . . , P>A·,·,pQ

)
. If P,Q or R are vectors we consider the flatten object. In particular, for x ∈ Rd, y ∈

Rn, we denote

A[x, y, ·] =

x
>A·,·,1y

...
x>A·,·,py

 ∈ Rp

rather than having A[x, y, ·] ∈ R1×1×p. Similarly, for z ∈ Rp, we have

A[·, ·, z] =

p∑
k=1

zkA·,·,k ∈ Rd×n.

For a tensor A, we denote

‖A‖2 = sup
x∈Rd∗,y∈Rn∗ ,z∈Rp∗

A[x, y, z]

‖x‖2‖y‖2‖z‖2
(20)

the norm induced by the Euclidean norm for the tensor A.

A.3 Gradients
For a multivariate function f : Rd 7→ Rn, composed of f (j) real functions with j ∈ {1, . . . , n}, we denote ∇f(x) =

(∇f (1)(x), . . . ,∇f (n)(x)) ∈ Rd×n, that is the transpose of its Jacobian on x, ∇f(x) = (∂f
(j)

∂xi
(x))1≤i≤d,1≤j≤n ∈ Rd×n.

We represent its 2nd order information by a tensor∇2f(x) = (∇2f (1)(x), . . . ,∇2f (n)(x)) ∈ Rd×d×n

8

For a real function, f : Rd × Rp 7→ R, whose value is denoted f(x, y), we decompose its gradient ∇f(x, y) ∈ Rd+p on
(x, y) ∈ Rd × Rp as

∇f(x, y) =

(
∇xf(x, y)
∇yf(x, y)

)
with ∇xf(x, y) ∈ Rd, ∇yf(x, y) ∈ Rp.

Similarly for a multivariate function f : Rd×Rp 7→ Rn and (x, y), we denote∇xf(x, y) = (∇xf (1)(x, y), . . . ,∇xf (n)(x, y)) ∈
Rd×n and we define similarly∇yf(x, y) ∈ Rp×n.

We drop the dependency to the time when it is clear from context, e.g., for a dynamic φt : Rd+p → Rd we denote by
∇uφt(xt, ut) = ∇utφt(xt, ut). Those definitions extend for noisy dynamics ψt, where we add the noise variable w ∈ Rq .

All Lipschitz continuity constants are defined with respect to the norm induced by the Euclidean norm. In particular, for a
multivariate twice differentiable function f , we say that it is smooth if its second order tensor has a bounded norm for the Euclidean
induced norm of a tensor defined in (20).

B Linear quadratic risk sensitive control
B.1 Min-max formulation
Proposition 1.1. Consider quadratic objectives and linear dynamics defined by

ht(xt) =
1

2
x>t Htxt + h̃>t xt, gt(ut) =

1

2
u>t Gtut + g̃>t ut,

xt+1 = Atxt +Btut + Ctwt, (5)

where Ht � 0, Gt � 0, wt ∼ N (0, σ2 Iq) and denote by H, B̃, C̃, x̃0 the matrices and vector such that for any trajectory x̄,
H = ∇2h(x̄), x̄ = B̃ū+ C̃w̄ + x̃0. We have that

(i) the risk sensitive control problem (3) is equivalent to

min
ū∈Rτp

sup
w̄∈Rτq

x̄∈Rτd

τ∑
t=1

1

2
x>t Htxt + h̃>t xt +

τ−1∑
t=0

1

2
u>t Gtut + g̃>t ut

−
τ−1∑
t=0

1

2θσ2
‖wt‖22 (6)

subject to xt+1 = Atxt +Btut + Ctwt

x0 = x̂0,

(ii) if (θσ2)−1 < λmax(C̃>HC̃) the risk-sensitive control problem is infeasible,
(iii) if (θσ2)−1 > λmax(C̃>HC̃), the risk-sensitive control problem can be solved analytically by dynamic programming.

Proof of (i). Since wt are i.i.d, the states xt given by the linear dynamics form a Markov sequence of random variables, i.e.,
denoting P the probability defined by the dynamics, for any t ∈ {0, . . . , τ − 1}, P(xt+1|xt, . . . , x0) = P(xt+1|xt) ∼
N (Atxt + Btut,Σt) where Σt = σ2CtC

>
t is potentially degenerated and x0 = x̂0. Precisely denote dµ(x̄) a measure such

that P(ΠNull(Σt)(xt+1 −Atxt −Btut) = 0) = 1 with ΠNull(Σt) the orthonormal projection on the null space of Σt, we have

Ex̄∼p(·;ū) [exp(θh(x̄))] ∝
∫

exp

(
−
τ−1∑
t=0

1

2
(xt+1 −Atxt −Btut)>Σ†t (xt+1 −Atxt −Btut)

+ θ

τ∑
t=1

1

2
x>t Htxt + h̃>t xt

)
dµ(x1, . . . , xτ)

=

∫
exp(−Q(x̄, ū))dµ(x̄),

where Q(x̄, ū) is a quadratic in x̄, ū and we ignored the normalization constants in the first line as we are interested in computing
the minimum. The integral will then be finite if and only if Q(x̄, ū) is bounded below in x̄ ∈ X = {x̄ : ΠNull(Σt)(xt+1 −Atxt −
Btut) = 0 for t ∈ {0, . . . , τ − 1}}. In that case, the quadratic reads Q(x̄, ū) = Q(x̄ − x̄∗, ū) + minx̄∈X Q(x̄, ū) where
x̄∗ ∈ arg minx̄∈X Q(x̄, ū). The expectation is then proportional to, the variance term being independent of ū,

Ex̄∼p(·;ū) [θ exp(h(x̄))] ∝ exp
(
−min

x̄
Q(x̄, ū)

)
.

9

By parameterizing the states as xt+1 = Atxt + Btut + Ctwt, using that Ct has the same image as Σt, the minimization can be
rewritten

min
x̄∈X

Q(x̄, ū) = min
w̄∈Rτd,x̄∈Rτd

− θ
τ∑
t=1

(
1

2
x>t Htxt + h̃>t xt

)
+

τ−1∑
t=0

1

2θσ2
‖wt‖22

subject to xt+1 = Atxt +Btut + Ctwt

x0 = x̂0.

The risk sensitive control problem (3) is then equivalent to

min
ū∈Rτp

sup
w̄∈Rτq,x̄∈Rτd

τ∑
t=1

1

2
x>t Htxt + h̃>t xt +

τ−1∑
t=0

1

2
u>t Gtut + g̃>t ut −

τ−1∑
t=0

1

2θσ2
‖wt‖22

subject to xt+1 = Atxt +Btut + Ctwt

x0 = x̂0,

which, if the sup is not attained, means that the problem is infeasible.

Proof of (ii). The linear dynamics read xt+1 −Atxt = Btut + Ctwt for t = 0, . . . , τ − 1. Denoting

L =


I 0 . . . 0

−A1 I
. . .

...
...

. . .
. . . 0

0 . . . −Aτ−1 I

 with L−1 =


I 0 . . . 0
A1 I 0 0
...

...
. . .

...
Aτ−1 . . . A1 Aτ−1 . . . A2 . . . I

 ,

we get
Lx̄ = B̄ū+ C̄w̄ + x̃0 and so x̄ = L−1(B̄ū+ C̄w̄ + x̃0),

where x̃0 = (A0x̂0; 0; . . . ; 0) ∈ Rτd, x̄ = (x1; . . . ;xτ), B̄ = diag(B0, . . . , Bτ−1), C̄ = diag(C0, . . . , Cτ−1). Problem (6)
reads then

min
ū∈Rτp

sup
w̄∈Rτq

1

2
(B̄ū+ C̄w̄ + x̃0)>L−>H̄L−1(B̄ū+ C̄w̄ + x̃0) + h̄>L−1(B̄ū+ C̄w̄ + x̃0) (21)

+
1

2
ū>Ḡū+ ḡ>ū− 1

2θσ2
‖w̄‖22,

where H̄ = diag(H1, . . . , Hτ), Ḡ = diag(G0, . . . , Gτ−1), h̄ = (h1; . . . ;hτ) and ḡ = (g0; . . . ; gτ−1). It is always a strongly
convex problem in ū by assumption on the Gt. If

(θσ2)−1 < λmax(C̄>L−>H̄L−1C̄)

i.e., (θσ2)−1 Iτq 6� C̄>L−>H̄L−1C̄, then there exists w̄∗ such that w̄∗>(C̄>L−>H̄L−1C̄ − (θσ2)−1 Iτq)w̄
∗ > 0, by taking

αw̄∗ with α → +∞, the maximization problem in (21) is always infinite, independently of ū. The claim follows by identifying
H = ∇2h(x̄) = H̄ , and C̃ = L−1C̄.

Proof of (iii). If
(θσ2)−1 > λmax(C̄>L−>H̄L−1C̄), (22)

i.e., (θσ2)−1 Iτq � C̄>L−>H̄L−1C̄, the maximization problem in (21) is a strongly concave problem in w̄ such that the max on
w̄ is finite. For the dynamic programming resolution, define cost-to-go functions starting from y at time t as

ct(y) = min
ut,...,uτ−1

sup
wt,...,wτ−1
xt,...,xτ

τ∑
s=t

1

2
x>s Hsxs + h̃>s xs +

τ−1∑
s=t

1

2
u>s Gsus + g̃>s us −

τ−1∑
s=t

1

2θσ2
‖ws‖22

subject to xs+1 = Asxs +Bsus + Csws for s = t, . . . , τ − 1

xt = y,

with the convention H0 = 0, h̃0 = 0. Cost-to-go functions satisfy the Bellman equation

ct(y) =
1

2
y>Hty + h̃>t y + min

ut∈Rp
sup
wt∈Rq

{
1

2
u>t Gtut + g̃>t ut −

1

2θσ2
‖wt‖22 + ct+1(Aty +Btut + Ctwt)

}
, (23)

10

with optimal control

u∗t (y) = arg min
ut∈Rp

{
1

2
u>t Gtut + g̃>t ut + sup

wt∈Rq

{
− 1

2θσ2
‖wt‖22 + ct+1(Aty +Btut + Ctwt)

}}
,

and optimal noise, if the sup is finite,

w∗t (ut, y) = arg max
wt∈Rd

{
− 1

2θσ2
‖wt‖22 + ct+1(Aty +Btut + Ctwt)

}
.

The final cost initializing the recursion is defined as cτ (y) = 1
2
y>Hτy + h̃>τ y. For quadratic costs and linear dynamics, the

cost-to-go functions are quadratic and can be computed analytically through the recursive equation (23). If the quadratic defining
the supremum problem is not negative semi-definite the problem is infeasible.

If condition (22) holds, the overall maximization is feasible, all supremums are reached. The solution of (6) is given by computing
c0(x̂0), which amounts to solve iteratively the Bellman equations starting from x0 = x̂0, i.e., getting the optimal control at the
given state and moving along the dynamics to compute the next cost-to-go:

u∗t = u∗t (xt), w∗t = w∗t (u∗t , xt), xt+1 = Atxt +Btu
∗
t + Ctw

∗
t .

B.2 Dynamic programming resolution
Detailed computations of the dynamic programming approach are given in the following proposition that supports Algo. 1. Though
finer sufficient conditions to get a solution can be derived in the case (θσ2)−1 = λmax(C>t Pt+1Ct), simply reducing the risk
sensitivity parameter is enough to get the condition in line 5. For simplicity, in Algo. 1, if condition (24) is not satisfied, we
consider the problem to be infeasible.

Proposition B.1. Consider Algo. 1 applied for the linear quadratic risk sensitive control problem (6) with Ht � 0 and Gt � 0. If
condition

(θσ2)−1 > λmax(C>t Pt+1Ct) (24)
in line 5 is satisfied for all t = τ − 1, . . . , 0, then the cost-to-go functions are quadratics of the form

ct(y) =
1

2
y>Pty + p>t y + c with Pt � 0, (25)

where c is a constant and Pt, pt are defined recursively in line 6.
If for any t = τ − 1, . . . , 0,

(θσ2)−1 < λmax(C>t Pt+1Ct),

the linear quadratic risk sensitive control problem (6) is infeasible.

Proof. The cost-to-go function at time τ reads cτ (y) = 1
2
y>Hτy+h̃>τ y. It has then the form (25) with pτ = h̃τ andPτ = Hτ � 0.

Assume now that at time t + 1, the cost-to-go function has the form of (25), i.e., ct+1(y) = 1
2
y>Pt+1y + p>t+1y with Pt+1 � 0.

Then, the Bellman equation reads, ignoring the constant terms,

ct(y) =
1

2
y>Hty + h̃>t y + min

ut∈Rp
sup
wt∈Rq

{
1

2
u>t Gtut + g̃>t ut −

1

2θσ2
‖wt‖22

+ p>t+1(Aty +Btut + Ctwt)

+
1

2
(Aty +Btut + Ctwt)

>Pt+1(Aty +Btut + Ctwt)

}
=

1

2
y>Hty + h̃>t y + min

ut∈Rp

{
1

2
u>t Gtut + g̃>t ut

+
1

2
(Aty +Btut)

>Pt+1(Aty +Btut) + p>t+1(Aty +Btut)

+ sup
wt∈Rq

[
1

2
w>t C

>
t [Pt+1(Aty +Btut) + pt+1]

− 1

2
w>t ((θσ2)−1 Iq −C>t Pt+1Ct)wt

]}
.

11

If (θσ2)−1 < λmax(C>t Pt+1Ct), the supremum in wt is infinite. If (θσ2)−1 > λmax(C>t Pt+1Ct), the supremum is finite and
reads

w∗t = ((θσ2)−1 Iq −C>t Pt+1Ct)
−1C>t [Pt+1(Aty +Btut) + pt+1]. (26)

So we get, ignoring the constant terms,

ct(y) =
1

2
y>Hty + h̃>t y + min

ut∈Rp

{1

2
u>t Gtut + g̃>t ut

+
1

2
(Aty +Btut)

>P̃t+1(Aty +Btut) + p̃>t+1(Aty +Btut)
}
, (27)

where

P̃t+1 = Pt+1 + Pt+1Ct((θσ
2)−1 Iq −C>t Pt+1Ct)

−1C>t Pt+1 � 0

p̃t+1 = pt+1 + Pt+1Ct((θσ
2)−1 Iq −C>t Pt+1Ct)

−1C>t pt+1.

We then get, ignoring the constant terms,

ct(y) =
1

2
y>(Ht +A>t P̃t+1At)y + (h̃t +A>t ρt)

>y − 1

2
y>A>t P̃t+1Bt(Gt +B>t P̃t+1Bt)

−1B>t P̃t+1Aty.

where ρt = p̃t+1 − P̃t+1Bt(Gt +B>t P̃t+1Bt)
−1[B>t p̃t+1 + g̃t]. The cost function is then a quadratic defined by

Pt = Ht +A>t P̃t+1At −A>t P̃t+1Bt(Gt +B>t P̃t+1Bt)
−1B>t P̃t+1At.

Denoting P̃ 1/2
t+1 a square root matrix of P̃t+1 such that P̃ 1/2

t+1 � 0 and P̃ 1/2
t+1P̃

1/2
t+1 = P̃t+1, we get

Pt = Ht +A>t P̃
1/2
t+1

(
Id−P̃

1/2
t+1Bt(Gt +B>t P̃t+1Bt)

−1B>t P̃
1/2
t+1

)
P̃

1/2
t+1At

= Ht +A>t P̃
1/2
t+1

(
Id +P̃

1/2
t+1BtG

−1
t B>t P̃

1/2
t+1

)−1
P̃

1/2
t+1At � 0,

where we use Sherman-Morisson-Woodbury formula for the last equality. This proves that ct(y) satisfies (25) at time t with Pt
defined above and

pt = h̃t +A>t

(
p̃t+1 − P̃t+1Bt(Gt +B>t P̃t+1Bt)

−1[B>t p̃t+1 + g̃t]
)
.

The optimal control is given from (27) as

u∗t (y) = −(Gt +B>t P̃t+1Bt)
−1[B>t P̃t+1Aty + g̃t +B>t p̃t+1]

and the optimal noise is given by (26), i.e.,

w∗t (y, ut) = ((θσ2)−1 Iq −C>t Pt+1Ct)
−1C>t [Pt+1(Aty +Btut) + pt+1].

Remark B.2. Consider the case h̃t = 0, g̃t = 0 such that p̃t+1 = 0 and pt+1 = 0. Then Algorithm 1 is a modified version of the
classical Linear Quadratic Regulator (LQR) algorithm where the value function at time t+ 1 is c̃t+1(y) = y>P̃t+1y/2 instead of
ct+1(y) = y>Pt+1y/2 for the LQR derivations.

In particular, denoting P 1/2
t+1 a square root matrix of Pt+1 and using Sherman-Morisson-Woodbury formula, we have that

P̃t+1 = P
1/2
t+1

(
Id−P

1/2
t+1Ct(C

>
t Pt+1Ct − (θσ2)−1 Id)

−1C>t P
1/2
t+1

)
P

1/2
t+1

= P
1/2
t+1(Id−θσ2P

1/2
t+1CtC

>
t P

1/2
t+1)−1P

1/2
t+1

such that for θ = 0 we get P̃t+1 = Pt+1, so we retrieve the minimization of a Linear Quadratic Gaussian control problem by
dynamic programming.

C Iterative linearized algorithms

C.1 Model minimization

We present the implementation of RegILEQG for general noisy dynamics of the form

xt+1 = ψt(xt, ut, wt). (28)

12

We define the trajectory as a function x̃ : Rτp×τq → Rτd of the control and noise variables decomposed as x̃(ū, w̄) =
(x̃1(ū, w̄); . . . ; x̃τ (ū, w̄)) where

x̃1(ū, w̄) = ψ0(x̂0, u0, w0), x̃t+1(x̄, w̄) = ψt(x̃t(ū, w̄), ut, wt) (29)

The risk sensitive objective (3) can be written

min
ū∈Rτp

fθ(ū) = ηθ(ū) + g(ū) where ηθ(ū) =
1

θ
log Ew̄

[
exp θh

(
x̃(ū, w̄)

)]
. (30)

The model we consider for the trajectory reads

x̃(ū+ v̄, w̄) ≈ x̃(ū, 0) +∇x̃(ū, 0)>(v̄, w̄) = x̃(ū, 0) +∇ūx̃(ū, 0)>v̄ +∇w̄x̃(ū, 0)>w̄, (31)

where x̃(ū, 0) is the exact trajectory, ∇ūx̃ and ∇w̄x̃ denote the gradient w.r.t. the command and the noise, respectively, see
Appendix A for gradient notations.

We approximate the objective as fθ(ū+ v̄) ≈ mfθ (ū+ v̄; ū), where

mfθ (ū+ v̄; ū) ,
1

θ
log Ew̄

[
exp θqh

(
x̄+∇ūx̃(ū, 0)>v̄ +∇w̄x̃(ū, 0)>w̄; x̄

)]
+ qg(ū+ v̄; ū) (32)

where qh(x̄+ ȳ; x̄) , h(x̄)+∇h(x̄)>ȳ+ ȳ>∇2h(x̄)ȳ/2, qg(ū+ v̄; ū) is defined similarly and x̄ = x̃(ū, 0) is the exact trajectory.
This model is then minimized with an additional proximal term. Formally, the algorithm starts at a point ū0 and defines the next

iterate as

ū(k+1) = ū(k) + arg min
v̄∈Rτp

{
mfθ (ū(k) + v̄; ū(k)) +

1

2γk
‖v̄‖22

}
(33)

where γk is the step-size: the smaller γk is, the closer the solution is to the current iterate.
The following proposition shows that the minimization step (33) amounts to a linear quadratic risk-sensitive control problem.

Prop. 2.1 is then a sub-case of the following proposition.

Proposition C.1. The model minimization step (33) is given as ū(k+1) = ū(k) + v̄∗ where v̄∗ is the solution of

min
v̄∈Rτp

sup
w̄∈Rτq ȳ∈Rτd

τ∑
t=1

(
1

2
y>t Htyt + h̃>t yt

)
+

τ−1∑
t=0

(
1

2
v>t (Gt + γ−1

k Ip)vt + g̃>t vt

)
−
τ−1∑
t=0

1

2θσ2
‖wt‖22 (34)

subject to yt+1 = Atyt +Btvt + Ctwt

y0 = 0,

where x(k)
t = x̃t(ū

(k), 0), At = ∇xψt(x(k)
t , u

(k)
t , 0)>, Bt = ∇uψt(x(k)

t , u
(k)
t , 0)>, Ct = ∇wψt(x(k)

t , u
(k)
t , 0)>, Ht =

∇2ht(x
(k)
t), h̃t = ∇ht(x(k)

t), Gt = ∇2gt(u
(k)
t), g̃t = ∇gt(u(k)

t).

Proof. To ease notations denote ū(k) = ū. Recall that the trajectory defined by ū, w̄ reads

x̃1(ū, w̄) = ψ0(x̂0, F
>
0 ū, E

>
0 w̄), x̃t+1(ū, w̄) = ψt(x̃t(ū, w̄), F>t ū, E

>
t w̄)

where Ft = et+1 ⊗ Ip ∈ Rτp×p satisfies F>t ū = ut, Et = et+1 ⊗ Iq ∈ Rτq×q satisfies E>t w̄ = wt and et ∈ Rτ is the tth

canonical vector in Rτ . The gradient is then given by

∇x̃1(ū, w̄) =

(
F0∇uψ0(x̂0, u0, w0)
E0∇wψ0(x̂0, u0, w0)

)
∇x̃t+1(ū, w̄) = ∇x̃t(ū, w̄)∇xψt(x̃t(ū, w̄), ut, wt) +

(
Ft∇uψt(x̃t(ū, w̄), ut, wt)
Et∇wψt(x̃t(ū, w̄), ut, wt)

)
For a given v̄ = (v0; . . . ; vτ−1), the product ȳ = (y1; . . . ; yτ) = ∇x̃(ū, 0)>(v̄, w̄) reads

y1 = ∇uψ0(x0, u0, 0)>v0 +∇wψ0(x0, u0, 0)>w0

yt+1 = ∇xψt(xt, ut, 0)>yt +∇uψt(xt, ut, 0)>vt +∇wψt(xt, ut, 0)>wt,

where xt = x̃t(ū, 0), x0 = x̂0 and we used that yt = ∇x̃t(ū, 0)>(v̄, w̄).
The approximate state objective inside the exponential in (32) reads then

qh
(
x̄+∇ūx̃(ū, 0)>v̄ +∇w̄x̃(ū, 0)>w̄; x̄

)
=

τ∑
t=1

qht(xt + yt;xt)

s.t. yt+1 = Atyt +Btvt + Ctwt

y0 = 0,

13

where At = ∇xψt(xt, ut, 0)>, Bt = ∇uψt(xt, ut, 0)>, Ct = ∇wψt(xt, ut, 0)>. We retrieve the model of a linear quadratic
control problem perturbed by noise w̄. The risk sensitive objective can then be decomposed as in Proposition 1.1, leading to the
claimed formulation.

C.2 ILEQG and RegILEQG implementations
C.2.1 Implementations by dynamic programming

We present in Algo. 2 the Regularized variant of ILEQG that calls Algo. 1 at each step to solve the linear quadratic problem by
dynamic programming. We present it for constant step-size. Line-searches are left for future work. We also present in Algo. 3
the classical ILEQG method equipped with a line-search on the Monte-Carlo approximation of the objective. Implementations
proposed in [Farshidian and Buchli, 2015] or [Ponton et al., 2016] do not mention the choice of the line-search.

C.2.2 Implementation by automatic differentiation

We consider here problems whose objective rely only in the last state, i.e.

h(x̄) = hτ (xτ), (35)

and assume hτ strictly convex. In that case we can use automatic differentiation oracles as defined in [Roulet et al., 2019] and
recalled below.

Definition C.2 (Automatic-differentiation oracle). Let x̃τ : Rτπ → Rd be a chain of compositions defined by

x0 = x̂0, xt+1 = ψ(xt, ωt) for t ∈ {0, . . . , τ − 1}

for differentiable functions ψt : Rd × Rπ , x̂0 ∈ Rd An automatic-differentiation oracle is any procedure that computes ∇x̃τ (ω̄)z
for any ω̄ = (ω0, . . . , ωτ−1) ∈ Rτπ , z ∈ Rd.

We can then use the dual optimization problem of (33) as shown in the following proposition. For final-state cost (35), the
automatic differentiation implementation is computationally less expensive than a dynamic programming approach whose naive
implementation requires the inversion of multiple matrices. The detailed implementation by automatic-differentiation oracle is
provided in Algo. 4.

Proposition C.3. Consider the model minimization subproblem (33) for strictly convex last state cost (35) and notations defined
in Prop. C.1. If∇2hτ (x

(k)
τ)−1 � θσ2∇w̄x̃τ (ū(k), 0)>∇w̄x̃τ (ū(k), 0), then

(i) the dual of subproblem (34) reads

min
z∈Rd

q̃∗hτ (z) + q̃∗g(−∇ūx̃τ (ū(k), 0)z)− θσ2

2
‖∇w̄x̃τ (ū(k), 0)z‖22, (36)

where q̃hτ (y) = 1
2
y>τ Hτyτ + h̃>τ yτ , q̃g(v̄) = 1

2
v̄>(Ḡ+γ−1

k Iτp)v̄+ g̃>v̄, Ḡ = diag(G0, . . . , Gτ−1), g̃ = (g̃0, . . . , g̃τ−1)
and for a function f , we denote by f∗ its convex conjugate,

(ii) the model minimization step is then given as ū(k+1) = ū(k) +∇q̃∗g(−∇ūx̃(ū(k), 0)z∗), where z∗ is solution of (36),

(iii) the model minimization step makes 10d+1 calls to an automatic differentiation oracle defined in Def. C.2 by using a conjugate
gradient method to solve (36).

Proof. To ease notations denote ū(k) = ū. Denoting Ã = ∇ūx̃τ (ū, 0)>, B̃ = ∇w̄x̃τ (ū, 0)>, q̃hτ (y) = 1
2
y>τ Hτyτ + h̃>τ yτ ,

q̃g(v̄) = 1
2
v̄>(Ḡ+ γ−1

k Iτp)v̄ + g̃>v̄, Ḡ = diag(G0, . . . , Gτ−1), g̃ = (g̃0, . . . , g̃τ−1), the model minimization subproblem (34)
for last state cost (35) reads

min
v̄∈Rτp

sup
w̄∈Rτq

q̃g(v̄) + q̃hτ (Ãv̄ + B̃w̄)− 1

2θσ2
‖w̄‖22

= min
v̄∈Rτp

q̃g(v̄) + sup
w̄∈Rτq

sup
z∈Rd

z>(Ãv̄ + B̃w̄)− q̃∗hτ (z)− 1

2θσ2
‖w̄‖22

= min
v̄∈Rτp

sup
z∈Rd

q̃g(v̄) + z>Ãv̄ − q̃∗hτ (z) +
θσ2

2
‖B̃>z‖22. (37)

14

Recall that for a function f(x) = x>q+ x>Qx/2 with Q � 0, we have f∗(z) = supx{z>x− f(x)} = (z− q)>Q−1(z− q)/2.
IfH−1

τ 6� θσ2B̃B̃> the supremum in z is infinite. IfH−1
τ � θσ2B̃B̃>, the supremum in z is finite. The problem is then a strongly

convex-concave problem such that min and max can be inverted leading to the dual problem

max
z∈Rd

−q̃∗hτ (z)− q̃∗g(−Ã>z) +
θσ2

2
‖B̃>z‖22.

The primal solution is obtained from a dual solution z∗ by the mapping v̄∗ = ∇q̃∗g(−Ã>z∗) obtained from (37).
The dual problem (36) is a quadratic problem, which can then be solved in d iterations by a conjugate gradients method.

The gradients of z → q̃∗g(−∇ūx̃(ū(k), 0)z) and z → θσ2

2
‖∇w̄x̃τ (ū(k), 0)z‖22 can be computed by an automatic differentiation

procedure defined in C.2. Each gradient computation requires the equivalent of two calls to an automatic differentiation oracle
as detailed in [Roulet et al., 2019]. The mapping to the primal solution costs an additional call. Finally, checking if the problem
is feasible requires to compute the Hessian of z → q̃∗hτ (z) − θσ2

2
‖B̃>z‖22 which costs 4d additional calls (each call computes

the second order derivative with respect to a given coordinate in Rd and computing the second order derivative amounts to back-
propagate through the computation of the gradient of z → θσ2

2
‖B̃>z‖22 which itself cost 2 calls to an automatic differentiation

procedure).

We detail the complete implementation by automatic differentiation in Algo. 4. We assume that we have access to a conjugate
gradients method conjgrad for quadratic problems of the form

min
z∈Rd

f(z) =
1

2
z>Az + b>z,

with A � 0, that given an oracle on the gradient of f outputs the solution of the quadratic problem. Formally, it reads
conjgrad(∇f) = arg minz∈Rd f(z). This can be implemented following Nesterov [2013].

15

Algorithm 1 Dynamic programming for Linear Quadratic Exponential Gaussian (LEQG) (6)

1: Inputs: Initial state x̂0, risk-sensitivity parameter θ, variance σ2, convex quadratic costs Ht � 0, h̃t, strictly
convex quadratic costs Gt � 0, g̃t, linear dynamics At, Bt, Ct

2: Backward pass:
3: Initialize Pτ = Hτ , pτ = h̃τ , feasible = True
4: for t = τ − 1, . . . , 0 do
5: if (θσ2)−1 > λmax(C>t Pt+1Ct) then
6: Compute

P̃t+1 = Pt+1 + Pt+1Ct((θσ
2)−1 Iq −C>t Pt+1Ct)

−1C>t Pt+1 (38)

p̃t+1 = pt+1 + Pt+1Ct((θσ
2)−1 Iq −C>t Pt+1Ct)

−1C>t pt+1 (39)

Pt = Ht +A>t P̃t+1At −A>t P̃t+1Bt(Gt +B>t P̃t+1Bt)
−1B>t P̃t+1At (40)

pt = h̃t +A>t
[
p̃t+1 − P̃t+1Bt(Gt +B>t P̃t+1Bt)

−1[B>t p̃t+1 + g̃t]
]

(41)

7: Store

Kt = −(Gt +B>t P̃t+1Bt)
−1B>t P̃t+1At Lxt = ((θσ2)−1 Iq −C>t Pt+1Ct)

−1C>t Pt+1At

kt = −(Gt +B>t P̃t+1Bt)
−1(g̃t +B>t p̃t+1) Lut = ((θσ2)−1 Iq −C>t Pt+1Ct)

−1C>t Pt+1Bt

lt = ((θσ2)−1 Iq −C>t Pt+1Ct)
−1C>t pt+1

8: else
9: State feasible = False

10: break
11: end if
12: end for
13: Rollout phase:
14: if feasible then
15: Initialize x0 = x̂0

16: for t = 0, . . . , τ − 1 do
17: Compute

u∗t = Ktxt + kt w∗t = Lxt xt + Lut u
∗
t + lt (42)

xt+1 = Atxt +Btu
∗
t + Ctw

∗
t (43)

18: end for
19: else
20: u∗t = None for all t
21: end if
22: Output: ū∗ = (u∗0; . . . ;u∗τ−1)

16

Algorithm 2 Regularized Iterative Linear Exponential Quadratic Gaussian (RegILEQG)

1: Inputs: Initial state x̂0, risk sensitive parameter θ, variance σ2, fixed step-size γ, initial command ū(0), number
of iterations K, convex costs ht, gt, dynamics ψt

2: for k = 0, . . . ,K do
3: Forward pass
4: Compute along the exact trajectory x̄(k) = x̃(ū(k), 0) defined by ū(k),

Ht = ∇2ht(x
(k)
t) h̃t = ∇ht(x(k)

t) Gt = ∇2gt(u
(k)
t) g̃t = ∇gt(u(k)

t)

At = ∇xψt(x(k)
t , u

(k)
t , 0)> Bt = ∇uψt(x(k)

t , u
(k)
t , 0)> Ct = ∇wψt(x(k)

t , u
(k)
t , 0)>

5: Backward pass
6: Apply Algo. 1 to

min
v̄∈Rτp

sup
w̄∈Rτd

τ∑
t=1

(
1

2
y>t Htyt + h̃>t yt

)
+

τ−1∑
t=0

(
1

2
v>t (Gt + γ−1 Ip)vt + g̃>t vt

)
−
τ−1∑
t=0

1

2θσ2
‖wt‖22

subject to yt+1 = Atyt +Btvt + Ctwt

y0 = 0.

7: if Algo. 1 cannot output a solution v̄∗ then
8: State feasible = False
9: break

10: else
11: Update ū(k+1) = ū(k) + v̄∗, with v̄∗ found by Algo. 1
12: end if
13: end for
14: Output: ū(K) if feasible or last iterate ū(k) if not feasible

17

Algorithm 3 Iterative Linear Exponential Quadratic Gaussian (ILEQG) (7)

1: Inputs: Initial state x̂0, risk sensitive parameter θ, variance σ2, initial command ū(0), number of iterations K,
convex costs ht, gt, dynamics ψt, line-search precision ε,

2: for k = 0, . . . ,K do
3: Forward pass
4: Compute along the exact trajectory x̄(k) = x̃(ū(k), 0) defined by ū(k),

Ht = ∇2ht(x
(k)
t) h̃t = ∇ht(x(k)

t) Gt = ∇2gt(u
(k)
t) g̃t = ∇gt(u(k)

t)

At = ∇xψt(x(k)
t , u

(k)
t , 0)> Bt = ∇uψt(x(k)

t , u
(k)
t , 0)> Ct = ∇wψt(x(k)

t , u
(k)
t , 0)>

5: Backward pass
6: Apply Algo. 1 to

min
v̄∈Rτp

sup
w̄∈Rτd

τ∑
t=1

(
1

2
y>t Htyt + h̃>t yt

)
+

τ−1∑
t=0

(
1

2
v>t Gtvt + g̃>t vt

)
−
τ−1∑
t=0

1

2θσ2
‖wt‖22

subject to yt+1 = Atyt +Btvt + Ctwt

y0 = 0.

7: if Algo. 1 cannot output a solution v̄∗ then
8: State feasible = False
9: break

10: else
11: Find α > 0 such that ū(k+1) = ū(k) + αv̄∗, with v̄∗ found by Algo. 1, satisfies

f̃θ(ū
(k+1)) ≤ f̃θ(ūk) + ε

where f̃θ(ū) is the Monte-Carlo approximation of the risk-sensitive loss.
12: end if
13: end for
14: Output: ū(K) if feasible or last iterate ū(k) if not feasible

18

Algorithm 4 RegILEQG by automatic differentiation for final-state cost (35)

1: Inputs: Initial state x̂0, risk sensitive parameter θ, variance σ2, step-size γ, initial command ū(0), number of
iterations K, convex costs gt, final strictly convex cost hτ , dynamics ψt.

2: for k = 0, . . . ,K do
3: Forward pass
4: Compute x̄(k) = x̃(ū(k), 0) along the trajectory
5: Store ∇ψt(x(k)

t , u
(k)
t , 0)) to compute any ∇ūx̃(ū(k), 0)z or∇w̄x̃(ū(k), 0)z by automatic-differentiation

6: Dual problem definition
7: Compute Hτ = ∇2hτ (x̄

(k)
τ), hτ = ∇h(x̄

(k)
τ), Gt = ∇2gt(u

(k)
t), g̃t = ∇gt(u(k)

t)
8: Define q̃∗hτ : z → 1

2 (z − h̃τ)>H−1
τ (z − h̃τ)

9: Define q̃∗g : ζ̄ → 1
2 (ζ̄ − g̃)>(Ḡ+ γ−1

k Iτp)(ζ̄ − g̃) where Ḡ = diag(G0, . . . , Gτ−1), g̃ = (g0; . . . ; gτ−1).
10: Define ∇q̃∗g : ζ̄ → (Ḡ+ γ−1

k Iτp)(ζ̄ − g̃)
11: Define

f : z → q̃∗hτ (z) + q̃∗g(−∇ūx̃τ (ū(k), 0)z)− θ

2
‖∇w̄x̃τ (ū(k), 0)z‖22

where∇ūx̃τ (ū(k), 0)z and ∇w̄x̃τ (ū(k), 0)z are computed by automatic differentiation.
12: Resolution
13: Define r : z → q∗hτ (z)− θ

2‖∇w̄x̃τ (ū(k), 0)z‖22
14: Compute ∇2r(z) for e.g. z = 0
15: if ∇2r(z) 6� 0 then
16: State feasible = False and break
17: else
18: Compute z∗ = conjgrad(∇f) = arg minz∈Rd f(z) where∇f is provided by automatic differentiation.
19: Map to primal solution ū(k+1) = ū(k) +∇q̃∗g(−∇ūx̃(ū(k), 0)z∗).
20: end if
21: end for
22: Output: ū(K) or last iterate ū(k) if not feasible

19

D Convergence analysis proofs
D.1 Risk-sensitive gradient
We recall the derivation of a risk-sensitive objective below. The proof follows from standard derivations.

Proposition D.1. Given a differentiable function f : Rτp+τq → R, define

F : ū→ 1

θ
log Ew̄∼N (0,σ2 Iτq) exp(θf(ū, w̄)).

Then for ū ∈ Rτp such that F (ū) < +∞,

∇F (ū) =
Ew̄∼N (0,σ2 Iτq) exp(θf(ū, w̄))∇ūf(ū, w̄)

Ew̄∼N (0,σ2 Iτq) exp(θf(ū, w̄))
= Ew̄∼p(·;ū)∇ūf(ū, w̄),

where

p(w̄; ū) = exp

(
θf(ū, w̄)− 1

2σ2
‖w̄‖22 − θF (ū)

)
.

D.2 Approximated risk-sensitive objective
We study the approximated risk-sensitive objective, its truncated gradient and the link with ILEQG in the following propositions.
Note that those results also hold for non-quadratic costs by considering

η̃θ(ū) =
1

θ
log Ew̄ exp[θqh(x̃(ū) +∇x̃(ū)>w̄; x̃(ū))].

in place of η̂θ and
∇̃η̃θ(ū) = Ew̄∼p̃(·;ū)

∇x̃(ū)∇qh(x̃(ū) +∇x̃(ū)>w̄; x̃(ū))

in place of ∇̂η̂θ(ū) where

p̃(w̄; ū) = exp

(
θqh(x̃(ū) +∇x̃(ū)>w̄; x̃(ū))− 1

2σ2
‖w̄‖22 − θη̃θ(ū)

)
Precisely, the approximated risk-sensitive loss η̃θ(ū) is defined if condition (14) holds, the probability distribution and the expres-
sion are the same. Prop. 2.3 is valid by replacing ∇̂η̂θ(ū) by ∇̃η̃θ(ū).

Proposition 2.2. For ū ∈ Rτp with x̄ = x̃(ū), if

σ−2 Iτp � θ∇x̃(ū)∇2h(x̄)∇x̃(ū)>, (14)

the approximated risk sensitive cost is defined and is the scaled log-partition function of

p̂(w̄; ū) = exp

(
θh(x̃(ū)+∇x̃(ū)>w̄)− 1

2σ2
‖w̄‖22−θη̂θ(ū)

)
, (15)

which is the density of a GaussianN (w̄∗,Σ) with

w̄∗ = θΣXh̃, Σ = (σ−2 Iτp−θXHX>)−1, (16)

where X = ∇x̃(ū), h̃ = ∇h(x̄), H = ∇2h(x̄) and x̄ = x̃(ū). Therefore, the approximated risk-sensitive loss can be computed
analytically.

Proof. For ū ∈ Rτp, since h is quadratic and w̄ → θh(x̃(ū) + ∇x̃(ū)>w̄) − ‖w̄‖22/2σ2 is strongly concave, the function
p(·; ū) is the density of a Gaussian where θη̂(ū) is its log-partition function. It can be factorized as follows using h(x̄ + ȳ) =
h(x̄) +∇h(x̄)>ȳ + 1

2
ȳ>∇2h(x̄)ȳ and denoting X = ∇x̃(ū), h̃ = ∇h(x̄), H = ∇2h(x̄), x̄ = x̃(ū),

θh(x̄+∇x̃(ū)>w̄)− 1

2σ2
‖w̄‖22 =θh(x̄) + θ(Xh̃)>w̄ +

θ

2
w̄>XHX>w̄ − 1

2σ2
‖w̄‖22

=θh(x̄)− 1

2
(w̄ − w̄∗)>Σ−1(w̄ − w̄∗) +

1

2
w̄>∗ Σ−1w̄∗ (44)

where Σ−1 = (σ−2 Iτp−θXHX>) � 0 and

w̄∗ = arg max
w̄∈Rτp

{
θ(Xh̃)>w̄ − 1

2
w̄>(σ−2 Iτp−θXHX>)w̄

}
= θ(σ−2 Iτp−θXHX>)−1Xh̃.

20

The first claim follows from the factorization in (44). The approximated risk-sensitive loss can then be computed analytically and
reads

η̂(ū) =
1

θ
log

∫
(2πσ2)−τp/2 exp

[
θh(x̃(ū) +∇x̃(ū)>w̄)− 1

2σ2
‖w̄‖22

]
dw̄

=
1

θ
log

(√
det(σ−2Σ) exp

[
θh(x̄) +

1

2
w̄>∗ Σ−1w̄∗

])
= − 1

2θ
log det(Iτp−θσ2XHX>) + h(x̄) +

θσ2

2
h̃>X>(Iτp−θσ2XHX>)−1Xh̃.

As a corollary we get an expression for the truncated gradient.

Corollary D.2. Given ū ∈ Rτp such that condition (14) holds, the truncated gradient of the approximated risk sensitive loss reads

∇̂η̂θ(ū) = ∇x̃(ū)∇h(x̃(ū) +∇x̃(ū)>w∗)

where w̄∗ is given in (16).

Proof. The truncated gradient is the mean of an affine function of w under the distribution p̂(·; ū) defined in (15), it reads then

∇̂η̂θ(ū) = Ew̄∼p̂(·;ū)[Aw̄ + b] = Aw̄∗ + b

with A, b defined by h, x̃, ū.

We can then link the truncated gradient to the RegILEQ step.

Proposition 2.3. Consider (RegILEQG) at iteration k, if condition (14) holds on ū(k), the step is defined and reads

ū(k+1) = ū(k)−(G+ γ−1
k Iτp +XHX>+θV)−1

× (∇g(ū(k)) + ∇̂η̂θ(ū(k))),

where

V = Varw̄∼p̂(·;ū(k))∇x̃(ū(k))∇h(x̃(ū(k)) +∇x̃(ū(k))>w)

= XHX>(σ−2 Iτp−θXHX>)−1XHX>

and X=∇x̃(ū(k)), H=∇2h(x̄), G=∇2g(ū(k)), x̄=x̃(ū(k)).

Proof. To ease notations denote ū(k) = ū, ū(k+1) = ū+ and γk = γ such that the ILEQG step reads ū+ = ū+ v̄∗ where v̄∗ is the
solution of the min-max problem

min
v̄∈Rτp

max
w̄∈Rτp

qh(x̄+∇x̃(ū)>(v̄ + w̄); x̄) + qg(ū+ v̄; ū) +
1

2γ
‖v̄‖22 −

1

2θσ2
‖w̄‖22

where x̄ = x̃(ū), qh(x̄ + ȳ; x̄) = h(x̄ + ȳ) = h(x̄) + ∇h(x̄)>ȳ + 1
2
ȳ>∇2h(x̄)ȳ, same for qg . Denote g̃ = ∇g(ū), G =

∇2g(ū), h̃ = ∇h(x̄), H = ∇2h(x̄) and X = ∇x̃(ū). The problem is then equivalent to

min
v̄∈Rτp

(g̃ +Xh̃)>v̄ +
1

2
v̄>(G+ γ−1 Iτp +XHX>)v̄ + max

w̄∈Rτp
(Xh̃+XHX>v̄)>w̄ − 1

2
w̄>((θσ2)−1 Iτp−XHX>)w̄

= min
v̄∈Rτp

(g̃ +Xh̃)>v̄ +
1

2
v̄>(G+ γ−1 Iτp +XHX>)v̄ +

1

2
(Xh̃+XHX>v̄)>((θσ2)−1 Iτp−XHX>)−1(Xh̃+XHX>v̄)

where we used (σ−2 Iτp−θXHX>) � 0. Denote

w̄∗ = ((θσ2)−1 Iτp−XHX>)−1Xh̃

which is equal to w̄∗ defined in Prop. 2.2. The solution of the problem reads then

v̄∗ = −(G+ γ−1 Iτp +R)−1(g̃ +Xh̃+XHX>w̄∗)

where

R = XHX> +XHX>((θσ2)−1 Iτp−XHX>)−1XHX>

21

The truncated gradient from Prop. D.2 reads

∇̂η̂θ(ū) = ∇x̃(ū)∇h(x̃(ū) +∇x̃(ū)>w̄∗)

= X(h̃+HX>w̄∗)

which concludes the proof.

D.3 Convergence analysis
Recall the assumptions made for the convergence analysis.

Assumption 2.4.
1. The dynamics φt are twice differentiable, bounded, Lipschitz, smooth such that the trajectory function x̃ is also twice differen-

tiable, bounded, Lipschitz and smooth. Denote by Lx̃ and `x̃ the Lipschitz continuity and smoothness constants respectively
of x̃ and define Mx̃ = maxū∈τp dist(x̃(ū), X∗), where X∗ = arg minx̄∈Rτd h(x̄).

2. The costs h and g are convex quadratics with smoothness constants Lh, Lg .
3. The risk-sensitivity parameter is chosen such that σ̃−2 = σ−2 − θLh`2x̃ > 0, which ensures that condition (14) holds for any
ū ∈ Rτp.

On X = x̃(Rτp), h is Lipschitz continuous, denote `h(X) the Lipschitz parameter. Using that h(x̄) = 1
2
(x̄ − x̄∗)>H(x −

x∗) + minx̄ h(x̄) with H = ∇2h(x̄) and x̄∗ ∈ arg minx̄ h(x̄), we get ‖∇h(x̄)‖2 ≤ Lh‖x̄− x̄∗‖2 and so

`h(X) ≤ LhMx̃ (45)

We detail the approximation made by the truncated gradient in the following proposition.

Proposition D.3. Under Ass. 2.4, we have for any ū ∈ Rτp,

‖∇η̂θ(ū)− ∇̂η̂θ(ū)‖2 ≤ θσ̃2L2
hLx̃`x̃M

2
x̃ + θ2σ̃4L3

hLx̃`
3
x̃M

2
x̃ + τpσ̃2LhLx̃`x̃.

Proof. We have with p̂(·; ū) defined in (15), and denoting h̃ = ∇h(x̄), H = ∇2h(x̄) and X = ∇x̃(ū) for x̄ = x̃(ū),

∇η̂θ(ū)− ∇̂η̂θ(ū) = Ew̄∼p̂(·;ū)∇2x̃(ū)[·, w̄,∇h(x̃(ū) +∇x̃(ū)>w̄)]

= Ew̄∼p̂(·;ū)

[
∇2x̃(ū)[·, w̄, h̃] +∇2x̃(ū)[·, w̄,HX>w̄]

]
(46)

= ∇2x̃[·, w̄∗, h̃] +

 Tr(X1,·,·HX
> Ew̄∼p̂(·;ū)[w̄w̄

>])
...

Tr(Xτp,·,·HX> Ew̄∼p̂(·;ū)[w̄w̄
>]),

 (47)

where X = ∇2x̃(ū) and we used the notations defined in Appendix A. We have then

Ew̄∼p̂(·;ū)[w̄w̄
>] = Varw̄∼p̂(·;ū)(w̄) + Ew̄∼p̂(·;ū)(w̄) Ew̄∼p̂(·;ū)(w̄)> = Σ + w̄∗w̄

>
∗

where w̄∗ and Σ are defined in (16). So we get

∇η̂θ(ū)− ∇̂η̂θ(ū) = ∇2x̃[·; w̄∗, h̃] +∇2x̃(ū)[·, w̄∗, HX>w̄∗] +

τp∑
i=1

∇2x̃(ū)[·, ui, HX>ui]

where Σ =
∑τp
i=1 uiu

>
i with ‖ui‖22 ≤ λmax(Σ). Therefore

‖∇η̂θ(ū)− ∇̂η̂θ(ū)‖2 ≤ Lx̃‖w̄∗‖2`h(X) + Lx̃‖w̄∗‖22Lh`x̃ + τpLx̃‖Σ‖2Lh`x̃
where `h(X) is the Lipschitz parameter of h on X = x̃(Rτp) that can be bounded by (45) and we used the tensor norm defined
in (20). The bound follows, using the definitions of w̄∗ and Σ, i.e.,

‖w̄∗‖2 ≤ θ(σ−2 − θLh`2x̃)−1`x̃`h(X),

‖Σ‖2 ≤ (σ−2 − θLh`2x̃)−1.

The convergence under appropriate sufficient decrease condition is presented in the following proposition.

22

Theorem 2.5. Under Ass. 2.4, suppose that the step-sizes of (RegILEQG) are chosen such that

f̂θ(ū
(k+1)) ≤ mfθ (ū(k+1); ū(k)) +

1

2γk
‖ū(k+1) − ū(k)‖22, (17)

with γk ∈ [γmin, γmax]. Then, the approximated objective f̂θ decreases and after K iterations we have

min
k=0,...,K−1

‖∇f̂θ(ū(k))‖2 ≤ L

√
2(f̂θ(ū(0))− f̂θ(ū(K)))

K
+ δ,

where L = maxγ∈[γmin,γmax]
√
γ(Lg + γ−1 + (σ̃/σ)2`2x̃Lh), δ = θσ̃2L2

hLx̃`x̃M
2
x̃ + θ2σ̃4L3

hLx̃`
3
x̃M

2
x̃ + τpσ̃2LhLx̃`x̃.

Proof. Under Ass. 2.4, the model mfθ (v̄; ū(k)) defined in (12) is convex as shown for example in the proof of Prop. 2.3. By using
that v̄ → mfθ (v̄; ū(k)) + 1

2γk
‖v̄ − ū(k)‖22 is γ−1

k strongly convex with minimum achieved on ūk+1 we get

f̂θ(ū
(k)) = mfθ (ū(k); ū(k)) ≥ mfθ (ū(k+1); ū(k)) +

1

γk
‖ū(k+1) − ū(k)‖22

(17)
≥ f̂θ(ū

(k+1)) +
1

2γk
‖ū(k+1) − ū(k)‖22. (48)

Rearranging the terms and summing the inequalities we get

1

K

K−1∑
k=0

1

2γk
‖ū(k+1) − ū(k)‖22 ≤

f̂θ(ū
(0))− f̂θ(ū(K))

K
.

Now using Proposition 2.3, we have that

‖∇g(ū(k)) + ∇̂η̂θ(ū(k))‖2 ≤ (Lg + γ−1 + ‖R‖2)‖ū(k+1) − ū(k)‖2,

where

‖R‖2 = ‖XH1/2(I−H1/2X>(XHX> − (θσ2)−1 I)−1XH
1/2)H

1/2X>‖2
= ‖XH1/2(I−θσ2H

1/2XX>H
1/2)−1H

1/2X>‖2

≤ `2x̃Lh
1− θσ2`2x̃Lh

,

using that for a semi-definite positive matrix A s.t 0 � A ≺ I, ‖I −A‖2 ≥ 1−λmax(A) and ‖H1/2‖22 = ‖H‖2. Therefore we get

min
k=0,...,K−1

‖∇g(ū(k)) + ∇̂η̂θ(ū(k))‖22 ≤
2L2(f̂θ(ū

(0))− f̂θ(ū(K)))

K

where L = maxγ∈[γmin,γmax]
√
γ(Lg + γ−1 + (σ̃/σ)2`2x̃Lh). Finally, using Prop. D.3, we get

min
k=0,...,K−1

‖∇f̂θ(ū(k))‖2 ≤ L

√
2(f̂θ(ū(0))− f̂θ(ū(K)))

K
+ θσ̃2L2

hLx̃`x̃M
2
x̃ + θ2σ̃4L3

hLx̃`
3
x̃M

2
x̃ + τpσ̃2LhLx̃`x̃.

The following proposition ensures that on any compact set there exists a step-size such that this criterion is satisfied.

Proposition D.4. Under Ass. 2.4, for any compact set C there exists MC > 0 such that for any ū ∈ C, v̄ ∈ C, the model mfθ

approximates the approximated risk-sensitive loss as

|f̂θ(ū+ v̄)−mfθ (ū+ v̄; ū)| ≤ MC‖v̄‖2

2
.

Proof. Denote RC = maxū∈C ‖ū‖2. Denote X = ∇x̃(ū), H = ∇2h(x̄). Following proof of Prop. 2.2, we have

mfθ (ū+ v̄; ū) =h(x̃(ū) +∇x̃(ū)>v̄)− 1

2θ
log det(I−θσ2XHX>)

+
θσ2

2
∇h(x̃(ū) +∇x̃(ū)>v̄)>X>(Iτp−θσ2XHX>)−1X∇h(x̃(ū) +∇x̃(ū)>v̄)

+ g(ū+ v̄)

23

In the following denote h̊ = ∇h(x̃(ū) + ∇x̃(ū)>v̄). On the other side, denote ȳ = x̃(ū + v̄), Y = ∇x̃(ū + v̄) and ĥ =
∇h(x̃(ū+ v̄)) = ∇h(ȳ), such that

f̂θ(ū+ v̄) = h(ȳ)− 1

2θ
log det(I−θσ2Y HY >) +

θσ2

2
ĥ>Y >(I−θσ2Y HY >)−1Y ĥ+ g(ū+ v̄)

First we have using x̄∗ ∈ arg minx̄∈Rτd h(x̄),

|h(x̃(ū+ v̄))− h(x̃(ū) +∇x̃(ū)>v̄)| = |1
2

(x̃(ū+ v̄) + x̃(ū) +∇x̃(ū)>v̄ − 2x̄∗)>H(x̃(ū+ v̄)− x̃(ū)−∇x̃(ū)>v̄)|

≤ 1

4
(2Mx̃ + `x̃RC)LhLx̃‖v̄‖22.

Then denote

f(X) = − 1

2θ
log det(I−θσ2XHX>)

such that

‖∇f(X)‖2 = σ2‖(I−θσ2XHX>)−1XH‖2 ≤
σ2Lh`x̃

1− θσ2Lh`2x̃
.

Therefore

|f(X)− f(Y)| ≤ `f‖∇x̃(ū+ v̄)−∇x̃(ū)‖2

≤ Lh`x̃Lx̃
1− θσ2Lh`2x̃

‖v̄‖2

where `f is the Lipschitz continuity of f for X s.t. ‖X‖2 ≤ `x̃.
Now for the last term we have

Tr(F (Y)ĥĥ>)−Tr(F (X)̊h̊h>) = Tr((F (Y)− F (X))ĥĥ>) + Tr(F (X)(ĥĥ> − h̊̊h>))

where F (X) = X>(I−θσ2XHX>)−1X . Define for M ∈ Rτd×τd with M � 0,

fM (X) =
1

2
Tr(MX>(I−θσ2XHX>)−1X).

We have

‖∇fM (X)‖2 =‖(I−θσ2XHX>)−1XM + θσ2(I−θσ2XHX>)−1XMX>(I−θσ2XHX>)−1XH‖2

≤ ‖M‖2`x̃
1− θσ2Lh`2x̃

+
θσ2‖M‖2`3x̃Lh
(1− θσ2Lh`2x̃)2

.

Therefore

|Tr((F (Y)− F (X))ĥĥ>)| ≤ `f
ĥĥ>
‖Y −X‖2

≤ `2h,x̃
(

`x̃
1− θσ2Lh`2x̃

+
θσ2`3x̃Lh

(1− θσ2Lh`2x̃)2

)
Lx̃‖v̄‖2,

where `f
ĥĥ>

is the Lipschitz continuity of fĥĥ> for X s.t. ‖X‖2 ≤ `x̃. Finally

|Tr(F (X)(ĥĥ> − h̊̊h>))| = |Tr(ĥ+ h̊)>F (X)(ĥ− h̊)|

≤ (2`h,x̃ + Lh`x̃RC)
`2x̃

1− θσ2Lh`2x̃
LhLx̃

‖v̄‖22
2

.

Combining all terms we get

|f̂θ(ū+ v̄)−mfθ (ū+ v̄)| ≤1

2
(2Mx̃ + `x̃RC)LhLx̃

‖v̄‖22
2

+
2Lh`x̃Lx̃

(1− θσ2Lh`2x̃)RC

‖v̄‖22
2

+ θσ2`2h,x̃

(
`x̃

1− θσ2Lh`2x̃
+

θσ2`3x̃Lh
(1− θσ2Lh`2x̃)2

)
Lx̃
‖v̄‖22

2

+
θσ2

2
(2`h,x̃ + Lh`x̃RC)

`2x̃
1− θσ2Lh`2x̃

LhLx̃
‖v̄‖22

2

This concludes the proof with

24

MC =
1

2
(2Mx̃ + `x̃RC)LhLx̃ +

2σ2Lh`x̃Lx̃
(1− θσ2Lh`2x̃)RC

+ θσ2`2h,x̃

(
`x̃

1− θσ2Lh`2x̃
+

θσ2`3x̃Lh
(1− θσ2Lh`2x̃)2

)
Lx̃ +

θσ2

2
(2`h,x̃ + Lh`x̃RC)

`2x̃
1− θσ2Lh`2x̃

LhLx̃.

Finally the iterates can be forced to stay in a compact set such that the overall convergence is ensured as shown in the following
proposition.

Proposition D.5. Let S0 = {ū : f̂θ(ū) ≤ f̂θ(ū
(0))} be the initial sub-level set of f̂θ and assume S0 is compact. Consider the

iterations of RegILEQG in (RegILEQG). Assume that

γk = γ̂ = min{`−1
0 ,M−1

C },

where MC is defined in Prop. D.4, and denoting B2,1 the Euclidean ball of radius 1 centered at 0,

`0 = max
ū∈S0

‖∇g(ū) + ∇̂η̂θ(ū)‖2, C = S0 + B2,1.

Then the sufficient decrease condition (17) is satisfied for all k.

Proof. Given ū(k) ∈ S0, we have from Proposition 2.3, using γk ≤ `−1
0

‖ū(k+1) − ū(k)‖2 ≤ γk‖∇g(ū(k)) + ∇̂η̂θ(ū(k))‖2 ≤ 1.

Therefore ū(k+1) ∈ S0 + B2,1 = C and ū(k) ∈ C. They satisfy then, using γk ≤M−1
C ,

f̂θ(ū
(k+1)) ≤ mfθ (ū(k+1); ū(k)) +

MC

2
‖ū(k+1) − ū(k)‖22 ≤ mfθ (ū(k+1); ū(k)) +

1

2γk
‖ū(k+1) − ū(k)‖22

Therefore ū(k+1) ∈ S. The claim follows by recursion starting from ū(k) = ū(0) ∈ S0.

E Detailed experimental setting
E.1 Discretization of the continuous time settings
The physical systems we consider below are described by continuous dynamics of the form

z̈(t) = f(z(t), ż(t), u(t))

where z(t), ż(t), z̈(t) denote respectively the position, the speed and the acceleration of the system and u(t) is a force applied on
the system. The state x(t) = (x1(t), x2(t)) of the system is defined by the position x1(t) = z(t) and the speed x2(t) = ż(t) and
the continuous cost is defined as

J(x, u) =

∫ T

0

h(x(t))dt+

∫ T

0

g(u(t))dt or J(x, u) = h(x(T)) +

∫ T

0

g(u(t))dt,

where T is the time of the movement and h, g are given convex costs. The discretization of the dynamics with a time step δ starting
from a given state x̂0 = (z0, 0) reads then

x1,t+1 = x1,t + δx2,t

x2,t+1 = x2,t + δf(x1,t, x2,t, ut)
for t = 0, . . . τ − 1

where τ = dT/δe and the discretized cost reads

J(x̄, ū) =

τ∑
t=1

h(xt) +

τ−1∑
t=0

g(ut) or J(x̄, ū) = h(xτ) +

T−1∑
t=0

g(ut).

E.2 Continuous control settings
The control settings are illustrated in Fig. 5.

25

1

2

z *

z()

Figure 5: Control settings considered. From left to right: pendulum, two-link arm robot.

Pendulum. We consider a simple pendulum illustrated in Fig. 5, where m = 1 denotes the mass of the bob, l = 1 denotes
the length of the rod, θ describes the angle subtended by the vertical axis and the rod, and µ = 0.01 is the friction coefficient. Its
dynamical evolution reads

θ̈(t) = −g
l

sin θ(t)− µ

ml2
θ̇(t) +

1

ml2
u(t)

The goal is to make the pendulum swing up (i.e. make an angle of π radians) and stop at a given time T . Formally, the continuous
cost reads

J(x, u) = (π − θ(T))2 + λ1θ̇(T)2 + λ2

∫ T

0

u2(t)dt, (49)

where x(t) = (θ(t), θ̇(t)), λ1 > 0 and λ2 > 0.

Two-link arm. We consider the arm model with 2 joints (shoulder and elbow), moving in the horizontal plane presented by [Li
and Todorov, 2004] and illustrated in Figure 5. The dynamics read

M(θ(t))θ̈(t) + C(θ(t), θ̇(t)) +Bθ̇(t) = u(t), (50)

where θ = (θ1, θ2) is the joint angle vector, M(θ) ∈ R2×2 is a positive definite symmetric inertia matrix, C(θ, θ̇) ∈ R2 is a vector
centripetal and Coriolis forces, B ∈ R2×2 is the joint friction matrix, and u ∈ R2 is the joint torque controlling the arm. See below
for the complete definitions.

The goal is to make the arm reach a feasible target z∗ and stop at that point. Denoting θ∗(z∗) a joint angle pairs that reach the
target, the objective reads then

J(x, u) = ‖θ(T)− θ∗(z∗)‖22 + λ1‖θ̇(T)‖22 + λ2

∫ T

0

‖u(t)‖22dt, (51)

where x(t) = (θ(t), θ̇(t)), λ1 > 0, λ2 > 0.

Detailed two-link arm model. We detail the the forward dynamics drawn from (50). We drop the dependence on t for
readability. The dynamics read

θ̈ = M(θ)−1(u− C(θ, θ̇)−Bθ̇).

The expressions of the different variables and parameters are given by

M(θ) =

(
a1 + 2a2 cos θ2 a3 + a2 cos θ2

a3 + a2 cos θ2 a3

)
C(θ, θ̇) =

(
−θ̇2(2θ̇1 + θ̇2)

θ̇2
1

)
a2 sin θ2

B =

(
b11 b12

b21 b22

) a1 = k1 + k2 +m2l
2
1

a2 = m2l1d2

a3 = k2,

where b11 = b22 = 0.05, b12 = b21 = 0.025, li and ki are respectively the length (30cm, 33cm) and the moment of inertia
(0.025kgm2 , 0.045kgm2) of link i , m2 and d2 are respectively the mass (1kg) and the distance (16cm) from the joint center to the

26

0.0 2.5 5.0 7.5 10.0
Iterations

0

1

2

R
is

k-
se

ns
it

iv
e

co
st

RegILEQG

ILEQG

0.0 2.5 5.0 7.5 10.0
Iterations

0

1

2

A
pp

ro
x.

ri
sk

-s
en

si
ti

ve
co

st

RegILEQG

ILEQG

Figure 6: Convergence of iterative linearized methods, with regularization, RegILEQG,
without regularization, ILEQG, on the two-link arm problem.

center of the mass for the second link. The inverse of the inertia matrix reads1

M(θ)−1 =
1

(a1 + 2a2 cos(θ2))a3 − (a3 + a2 cos θ2)2

(
a3 −(a3 + a2 cos θ2)

−(a3 + a2 cos θ2) a1 + 2a2 cos θ2

)
.

E.3 Noise modeling details
For the two-link arm we use σ0 = 1/‖M(θ)−1‖ to normalize the noise in the risk-sensitive and the test costs. Otherwise the
modeled noise led experimentally to a chaotic behavior. Precisely we use for the risk-sensitive cost,

x1,t+1 = x1,t + δx2,t

x2,t+1 = x2,t + δf(x1,t, x2,t, ut + wt)
for t = 0, . . . , τ − 1.

with wt ∼ N (0, σ2
0 I) and for the test cost,

x1,t+1 = x1,t + δx2,t

x2,t+1 = x2,t + δf(x1,t, x2,t, ut + ρ1(t = tw))
for t = 0, . . . , τ − 1.

where ρ ∼ N (0, σtest/σ0 Ip) and the plots are shown for increasing σtest. For the pendulum problem we did not normalize the
noise. We leave the analysis of the choice of σ for future work.

E.4 Optimization details
Convergence results. For Fig. 2, we took λ1 = 0.1, λ2 = 0.01, T = 5, in (49) for an horizon τ = 100 and θ = 4. We present
in Fig. 6 the convergence obtained for the two-link arm problem, where we used the same parameters for λ1, λ2, T, τ, θ. The best
step-sizes found after the burn-in phase were 8 for RegILEQG and 0.5 for ILEQG. Again the advantage of the regularized approach
is that it can select bigger step-sizes while staying stable.

Robustness results. For both settings we used RegILEQG with a burn-in phase of 10 iterations and a grid of step-sizes 2i for
i ∈ {−5, 5}. We run the algorithm for 50 iterations and take the best solution according to the approximate risk-sensitive function.

For the pendulum problem we used λ1 = 10, λ2 = 10−3, T = 5, for an horizon τ = 100. For the two-link arm problem we
used λ1 = 10−2 and λ2 = 10−3, T = 5, and the same horizon.

1Note that the dynamics have continuous derivatives if the norm of the denominator is bounded below by a positive constant 0. We have

(a1 + 2a2 cos(θ2))a3 − (a3 + a2 cos θ2)
2 = α− β cos2 θ2

with
α = a3(a1 − a3) = k1k2 +m2l

2
1k2 β = a2

2 = m2
2l

2
1d

2
2,

which gives α = 9.1125 × 10−2 and β = 2.304 × 10−3. Therefore it is bounded below by a positive constant, the function is continuously
differentiable.

27

	Risk-sensitive control
	Iterative linearized risk-sensitive control
	Model minimization
	Convergence analysis

	Numerical experiments
	Results

	Conclusion
	Notations
	Miscellaneous
	Tensors
	Gradients

	Linear quadratic risk sensitive control
	Min-max formulation
	Dynamic programming resolution

	Iterative linearized algorithms
	Model minimization
	ILEQG and RegILEQG implementations
	Implementations by dynamic programming
	Implementation by automatic differentiation

	Convergence analysis proofs
	Risk-sensitive gradient
	Approximated risk-sensitive objective
	Convergence analysis

	Detailed experimental setting
	Discretization of the continuous time settings
	Continuous control settings
	Noise modeling details
	Optimization details

