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Sparse recovery problems

Goal: Recover a signal x∗ ∈ Rd from n noisy linear observations

bi = aTi x∗ + ηi

where ηi are bounded i.i.d. noise

Assumption:
x∗ is s-sparse i.e.

‖x‖0 = Card({i ∈ {1, . . . , d} : xi 6= 0}) ≤ s � d

Applications:
I Coding/Decoding audio signals, images, ...
I Find explanatory variables for an experiment



Sparse recovery problems

Decoding procedures:
Given b = (b1, . . . , bn)

T ∈ Rn and A = (a1, . . . , an)
T ∈ Rn×d

I In absence of noise (η = 0), solve

minimize ‖x‖1
subject to Ax = b

(Exact recovery)

I In presence of noise, solve

minimize ‖x‖1
subject to ‖Ax − b‖2 ≤ δ‖A‖2

(Robust recovery)

where δ is an estimation of the level of noise and ‖A‖2 is the
spectral norm of the observation matrix A

Other procedures : Lasso, Dantzig selector,...



Sparse recovery problems

Resolution of

minimize ‖x‖1
subject to Ax = b

(Exact recovery)

Assumption: Observations are orthonormal, AAT =n so projection on
feasible set is available

Problem: ‖x‖1 is convex but non smooth.

x → ‖x‖1



Recovery procedures

Resolution of

minimize ‖x‖1
subject to Ax = b

(Exact recovery)

Assumption: Observations are orthonormal, AAT =n so projection on
feasible set is available

Problem: ‖x‖1 is convex but non smooth. Yet it can be smoothed !

x → ‖x‖1



Recovery procedures
Smoothing technique:

‖x‖1 = sup
‖y‖∞≤1

〈x , y〉 → fε(x) = sup
‖y‖∞≤1

〈x , y〉 − ε

2d
‖y‖22

fε is
I smooth with constant d/ε
I approximates ‖.‖1 uniformly up to ε

2

Optimal algorithm Beck11:
Use accelerated gradient algorithm on fε to solve exact recovery at ε/2
Starting from x0 overall procedure outputs for an accuracy ε after t
iterations x̂ = S(x0, ε, t) s.t.

‖x̂‖1 − ‖x∗‖1 ≤
2d‖x0 − x∗‖22

εt
+
ε

2
Given an estimate R ≥ ‖x0 − x̂‖, with appropriate ε,

‖x̂‖1 − ‖x∗‖1 = O(1/t)



Sharpness

Idea:
‖x‖1 is sharp so exploit it on set {x : Ax = b} by restarts to

minimize ‖x‖1
subject to Ax = b

(Exact recovery)

In the following:
For x∗ s-sparse such that Ax∗ = b, assume

‖x‖1 − ‖x∗‖1 > γ‖x − x∗‖1 (Sharp)

for any x 6= x∗ such that Ax = b, and some 0 ≤ γ < 1.
Remark: x∗ unique minimizer of the decoding procedure

Plan:
I Analyze restart schemes to converge to x∗

I Link sharpness to recovery performance by computing γ



Scheduled restarts

Scheme: Run universal smoothing procedure S, stop it, restart it from
last iterate with new target accuracy

Schedule both times tk of restart and target accuracies εk , from x0 ∈ Rd ,

xk = S(xk−1, εk , tk)



Scheduled restarts

Optimal schedule *Roul17a

Given A ∈ Rn×p and x∗ ∈ Rp, assume there exists γ > 0

‖x‖1 − ‖x∗‖1 > γ‖x − x∗‖1,

for any x 6= x∗ such that Ax = Ax∗ = b
Given ε0 ≥ ‖x0‖1 − ‖x∗‖1, run scheduled restarts with

εk = e−1εk−1, tk = 2e
√
p/γ

Then after R restarts and N =
∑R

i=1 tk total iterations, it outputs x̂ s.t.

‖x̂‖1 − ‖x∗‖1 ≤ exp
(
− γ

2
√
p
eN

)
ε0.

So the optimal complexity is in O(γ−1 log ε) iterations to achieve ε
accuracy



Scheduled restarts

In practice γ is unknown

Practical scheme (log-scale grid search):
I Given a fixed budget of iterations N, run for i ∈ [1, ..., blogh Nc]

Scheduled restart with tk = Ci where Ci = hi

I Stop each scheme after N iterations

Analysis:
I Needs N big enough for restarts to be relevant
I Cost of the grid search logh(N)

I One scheme achieves

‖x̂‖1 − ‖x∗‖1 ≤ exp
(
− γ

2h
√
p
eN

)
ε0.



Numerical Illustration
Comparison to plain smoothing technique implementation (called NESTA
Beck11)

I Best restarted NESTA (solid red line) for a budget of 500 iterations
I Overall cost of the practical restart schemes (dashed red line)
I Plain NESTA implementation with low accuracy ε = 10−1 (dotted black

line) and higher accuracy ε = 10−3 (dash-dotted black line)



Numerical Illustration

Comparison to heuristic of restarts based on stagnancy of objective
values (called continuation steps Beck11)

I Best restarted NESTA (solid red line) for a budget of 500 iterations
I Overall cost of the practical restart schemes (dashed red line)
I NESTA with 5 continuation steps (dotted blue line)

Crosses represent the restart occurrences. Left: n = 200. Right : n = 300.



Recovery performance

Statistical point of view:
Given a s-sparse vector x∗, what are the assumptions on the observation
matrix A such that x∗ can be recovered by solving

minimize ‖x‖1
subject to Ax = b

(Exact recovery)

or such that x∗ can be approximated by solving

minimize ‖x‖1
subject to ‖Ax − b‖2 ≤ δ‖A‖2

(Robust recovery)

where b = Ax∗

References: Most famous is the Restricted Isometric Property Cand06a,
lots exist, here focus on Null Space Property and Minimal Conically
Restricted Singular Values



Null Space Property

Null Space Property Cohe09

A matrix A satisfies the Null Space Property (NSP) at order s with
constant α ≥ 1 if for any subset S ⊂ {1, . . . d}, with Card(S) ≤ s, and
any z ∈ Null(A) \ {0},

α‖zS‖1 < ‖zSc‖1,

where Null(A) is the null space of A, and zS ∈ Rd denotes the vector
obtained by zeroing all coefficients of z that are not in S .

Recovery guarantees:
Necessary and sufficient condition for exact recovery of any s-sparse
vector

Proof for sufficiency:
Comes from sharpness !



Sharpness and Null Space Property

Null Space Property ⇔ Sharpness *Roul17a

Given an observation matrix A ∈ Rn×p satisfying NSP at order s with
constant α ≥ 1, if the original signal x∗ is s-sparse, then for any x ∈ Rp

satisfying Ax = Ax∗, x 6= x∗, we have

‖x‖1 − ‖x∗‖1 >
α− 1
α+ 1

‖x − x∗‖1 (Sharp)

Conversely, if A is such that (Sharp) is satisfied on every s-sparse vectors,
then it satisfies NSP at order s.

Consequences:
I NSP controls optimal convergence rate of restart
I Can use statistical analysis of NSP



Recovery threshold

Recovery threshold
Denote sA = 1/diam(Bd

1 ∩Null(A))2 where Bd
1 is the `1 unit ball in Rd ,

then A satisfies (NSP) at any s < sA with

α = 2
√
sA/s − 1 > 1

Consequence: Optimal rate of convergence of restart scheme in terms
of recovery threshold

‖x̂‖1 − ‖x∗‖1 ≤ exp
(
−
(
1−

√
s/sA

) e

2
√
p
N

)
ε0,



Oversampling ratio

Random observations:
For random observation matrix A, diam(Bd

1 ∩Null(A)) ≤ c
√

log d
n with

high probability, where c > 0 is an absolute constant. Therefore
I sA ≥ n/(c2 log d)
I O(s log d) observations are sufficient to recover any s-sparse signals

Consequence: Optimal rate of convergence of restart scheme to decode
s-sparse signals in terms of oversampling ratio

‖x̂‖1 − ‖x∗‖1 ≤ exp

(
−

(
1− c

√
s log d

n

)
e

2
√
p
N

)
ε0



Numerical Illustration

Best restart scheme found by grid search for increasing values of the
oversampling ratio τ = n/s.

Left : sparsity s = 20 fixed. Right : number of samples n = 200 fixed.



Robust Recovery

Robust Recovery Performance Chan12

Given a coding matrix A ∈ Rn×d and an original s-sparse signal x∗,
suppose we observe b = Ax∗ + w where ‖w‖2 ≤ δ‖A‖2 and denote x̂ an
optimal solution of

minimize ‖x‖1
subject to ‖Ax − b‖2 ≤ δ‖A‖2

(Robust recovery)

If the Minimal Conically Restricted Singular Value (MCRSV)

µs(A) = min
S⊂{1,...,d}
Card(S)≤s

min
‖zSc ‖1≤‖zS‖1
‖z‖2=1

‖Az‖2

is positive, the following error bound holds:

‖x̂ − x∗‖2 ≤ 2
δ‖A‖2
µs(A)

.



Restricted Singular values and Null Space Property

MCRSV and NSP *Roul17a

Given a matrix A ∈ Rn×p and a sparsity level 1 ≤ s ≤ d , if the MCRSV
µs(A) is positive, then A satisfies NSP at order s for any constant

α ≤
(
1− µs(A)

‖A‖2

)−1

Consequence:
MCRSV µs(A) controls

I sharpness for exact recovery
I optimal rate of convergence of restart schemes for exact recovery of

s-sparse signals



Additional remarks

Link to previous computational analysis
MCRSV matches Renegar condition number that measures complexity of
optimality certificates of exact recovery of s-sparse signals

Beyond `1 norm
Results generalize to other sparse structures, i.e. group norms and low
rank matrices. One retrieves

I Sharpness of exact recovery problem
I Generalized Null Space Property
I Generalized Minimal Conically Restricted Singular Values
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