Computational Complexity versus Statistical Performance for Sparse Recovery Problems

Vincent Roulet

June 5, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sparse recovery problems

Goal: Recover a signal $x_* \in \mathbb{R}^d$ from *n* noisy linear observations

$$b_i = a_i^T x_* + \eta_i$$

where η_i are bounded i.i.d. noise

Assumption:

x_{*} is s-sparse i.e.

$$\|x\|_0 = Card(\{i \in \{1, \dots, d\} : x_i \neq 0\}) \le s \ll d$$

うして ふゆう ふほう ふほう うらつ

Applications:

- Coding/Decoding audio signals, images, ...
- Find explanatory variables for an experiment

Sparse recovery problems

Decoding procedures: Given $b = (b_1, \ldots, b_n)^T \in \mathbb{R}^n$ and $A = (a_1, \ldots, a_n)^T \in \mathbb{R}^{n \times d}$ • In absence of noise $(\eta = 0)$, solve minimize $||x||_1$ (Exact recovery) subject to Ax = bIn presence of noise, solve minimize $||x||_1$ (Robust recovery) subject to $||Ax - b||_2 \le \delta ||A||_2$ where δ is an estimation of the level of noise and $||A||_2$ is the spectral norm of the observation matrix A

うして ふゆう ふほう ふほう うらつ

Other procedures : Lasso, Dantzig selector,...

Sparse recovery problems

Resolution of

$$\begin{array}{ll} \text{minimize} & \|x\|_1 \\ \text{subject to} & Ax = b \end{array} \qquad (\text{Exact recovery})$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Assumption: Observations are orthonormal, $AA^T =_n$ so projection on feasible set is available

Problem: $||x||_1$ is convex but non smooth.

Recovery procedures

Resolution of

$$\begin{array}{ll} \text{minimize} & \|x\|_1 \\ \text{subject to} & Ax = b \end{array} \qquad (\text{Exact recovery})$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Assumption: Observations are orthonormal, $AA^T =_n$ so projection on feasible set is available

Problem: $||x||_1$ is convex but non smooth. Yet it can be smoothed !

Recovery procedures

Smoothing technique:

$$\|x\|_{1} = \sup_{\|y\|_{\infty} \le 1} \langle x, y \rangle \quad \to \quad f_{\varepsilon}(x) = \sup_{\|y\|_{\infty} \le 1} \langle x, y \rangle - \frac{\varepsilon}{2d} \|y\|_{2}^{2}$$

 $f_{arepsilon}$ is

- smooth with constant d/ε
- approximates $\|.\|_1$ uniformly up to $\frac{\varepsilon}{2}$

Optimal algorithm Beck11:

Use accelerated gradient algorithm on f_{ε} to solve exact recovery at $\varepsilon/2$ Starting from x_0 overall procedure outputs for an accuracy ε after t iterations $\hat{x} = S(x_0, \varepsilon, t)$ s.t.

$$\|\hat{x}\|_1 - \|x^*\|_1 \le \frac{2d\|x_0 - x^*\|_2^2}{\varepsilon t} + \frac{\varepsilon}{2}$$

Given an estimate $R \geq \|x_0 - \hat{x}\|$, with appropriate ε ,

$$\|\hat{x}\|_1 - \|x^*\|_1 = O(1/t)$$

Sharpness

Idea:

 $||x||_1$ is sharp so exploit it on set $\{x : Ax = b\}$ by restarts to

minimize
$$\|x\|_1$$

subject to $Ax = b$ (Exact recovery)

In the following: For x^* *s*-sparse such that $Ax^* = b$, assume

$$\|x\|_1 - \|x^*\|_1 > \gamma \|x - x^*\|_1$$
 (Sharp)

うして ふゆう ふほう ふほう うらつ

for any $x \neq x^*$ such that Ax = b, and some $0 \leq \gamma < 1$. Remark: x^* unique minimizer of the decoding procedure

Plan:

- Analyze restart schemes to converge to x*
- \blacktriangleright Link sharpness to recovery performance by computing γ

Scheme: Run universal smoothing procedure \mathcal{S} , stop it, restart it from last iterate with new target accuracy

Schedule both times t_k of restart and target accuracies ε_k , from $x_0 \in \mathbb{R}^d$,

$$x_k = \mathcal{S}(x_{k-1}, \varepsilon_k, t_k)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Scheduled restarts

Optimal schedule *Roul17a

Given $A \in \mathbb{R}^{n \times p}$ and $x^* \in \mathbb{R}^p$, assume there exists $\gamma > 0$

$$||x||_1 - ||x^*||_1 > \gamma ||x - x^*||_1,$$

for any $x \neq x^*$ such that $Ax = Ax^* = b$ Given $\varepsilon_0 \ge ||x_0||_1 - ||x^*||_1$, run scheduled restarts with

$$\varepsilon_k = e^{-1} \varepsilon_{k-1}, \quad t_k = 2e\sqrt{p}/\gamma$$

Then after R restarts and $N = \sum_{i=1}^{R} t_k$ total iterations, it outputs \hat{x} s.t.

$$\|\hat{x}\|_1 - \|x^*\|_1 \leq \exp\left(-\frac{\gamma}{2\sqrt{p}}eN\right)\varepsilon_0.$$

So the optimal complexity is in $O(\gamma^{-1}\log \varepsilon)$ iterations to achieve ε accuracy

Scheduled restarts

In practice γ is unknown

Practical scheme (log-scale grid search):

• Given a fixed budget of iterations N, run for $i \in [1, ..., \lfloor \log_h N \rfloor]$

Scheduled restart with
$$t_k = C_i$$
 where $C_i = h^i$

Stop each scheme after N iterations

Analysis:

- Needs N big enough for restarts to be relevant
- Cost of the grid search $\log_h(N)$
- One scheme achieves

$$\|\hat{x}\|_1 - \|x^*\|_1 \le \exp\left(-rac{\gamma}{2h\sqrt{p}}eN
ight)arepsilon_0.$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Numerical Illustration

Comparison to plain smoothing technique implementation (called NESTA Beck11)

- Best restarted NESTA (solid red line) for a budget of 500 iterations
- Overall cost of the practical restart schemes (dashed red line)
- Plain NESTA implementation with low accuracy ε = 10⁻¹ (dotted black line) and higher accuracy ε = 10⁻³ (dash-dotted black line) ≥ · · ≥ · ≥

Numerical Illustration

Comparison to heuristic of restarts based on stagnancy of objective values (called continuation steps Beck11)

- Best restarted NESTA (solid red line) for a budget of 500 iterations
- Overall cost of the practical restart schemes (dashed red line)
- NESTA with 5 continuation steps (dotted blue line)

Crosses represent the restart occurrences. Left: n = 200. Right : n = 300.

Recovery performance

Statistical point of view:

Given a *s*-sparse vector x^* , what are the assumptions on the observation matrix *A* such that x^* can be recovered by solving

minimize
$$||x||_1$$

subject to $Ax = b$ (Exact recovery)

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

or such that x^* can be approximated by solving

 $\begin{array}{ll} \mbox{minimize} & \|x\|_1 \\ \mbox{subject to} & \|Ax-b\|_2 \leq \delta \|A\|_2 \end{array} \tag{Robust recovery}$

where $b = Ax^*$

References: Most famous is the Restricted Isometric Property Cand06a, lots exist, here focus on Null Space Property and Minimal Conically Restricted Singular Values

Null Space Property

Null Space Property Cohe09

A matrix A satisfies the Null Space Property (NSP) at order s with constant $\alpha \ge 1$ if for any subset $S \subset \{1, \ldots d\}$, with $Card(S) \le s$, and any $z \in Null(A) \setminus \{0\}$,

 $\alpha \| z_{S} \|_{1} < \| z_{S^{c}} \|_{1},$

where Null(A) is the null space of A, and $z_S \in \mathbb{R}^d$ denotes the vector obtained by zeroing all coefficients of z that are not in S.

Recovery guarantees:

Necessary and sufficient condition for exact recovery of any s-sparse vector

うして ふゆう ふほう ふほう うらつ

Proof for sufficiency:

Comes from sharpness !

Sharpness and Null Space Property

Null Space Property \Leftrightarrow Sharpness *Roul17a

Given an observation matrix $A \in \mathbb{R}^{n \times p}$ satisfying NSP at order *s* with constant $\alpha \ge 1$, if the original signal x^* is *s*-sparse, then for any $x \in \mathbb{R}^p$ satisfying $Ax = Ax^*$, $x \ne x^*$, we have

$$\|x\|_1 - \|x^*\|_1 > \frac{\alpha - 1}{\alpha + 1} \|x - x^*\|_1$$
 (Sharp)

うして ふゆう ふほう ふほう うらつ

Conversely, if A is such that (Sharp) is satisfied on every s-sparse vectors, then it satisfies NSP at order s.

Consequences:

- NSP controls optimal convergence rate of restart
- Can use statistical analysis of NSP

Recovery threshold

Recovery threshold

Denote $s_A = 1/\operatorname{diam}(B_1^d \cap \operatorname{Null}(A))^2$ where B_1^d is the ℓ_1 unit ball in \mathbb{R}^d , then A satisfies (NSP) at any $s < s_A$ with

$$\alpha = 2\sqrt{s_A/s} - 1 > 1$$

Consequence: Optimal rate of convergence of restart scheme in terms of recovery threshold

$$\|\hat{x}\|_1 - \|x^*\|_1 \leq \exp\left(-\left(1 - \sqrt{s/s_{\mathcal{A}}}
ight)rac{e}{2\sqrt{
ho}}\mathcal{N}
ight)arepsilon_0,$$

うして ふゆう ふほう ふほう うらつ

Oversampling ratio

Random observations:

For random observation matrix A, $\operatorname{diam}(B_1^d \cap \operatorname{Null}(A)) \leq c \sqrt{\frac{\log d}{n}}$ with high probability, where c > 0 is an absolute constant. Therefore

- ► $s_A \ge n/(c^2 \log d)$
- $O(s \log d)$ observations are sufficient to recover any s-sparse signals

Consequence: Optimal rate of convergence of restart scheme to decode *s*-sparse signals in terms of oversampling ratio

$$\|\hat{x}\|_1 - \|x^*\|_1 \le \exp\left(-\left(1 - c\sqrt{\frac{s\log d}{n}}\right)\frac{e}{2\sqrt{p}}N\right)\varepsilon_0$$

うして ふゆう ふほう ふほう うらつ

Numerical Illustration

Left : sparsity s = 20 fixed. Right : number of samples n = 200 fixed.

(日) (四) (日) (日)

э

Robust Recovery

Robust Recovery Performance Chan12

Given a coding matrix $A \in \mathbb{R}^{n \times d}$ and an original *s*-sparse signal x^* , suppose we observe $b = Ax^* + w$ where $||w||_2 \le \delta ||A||_2$ and denote \hat{x} an optimal solution of

minimize
$$\|x\|_1$$

subject to $\|Ax - b\|_2 \le \delta \|A\|_2$ (Robust recovery)

・ロト ・聞ト ・ヨト ・ヨト

-

If the Minimal Conically Restricted Singular Value (MCRSV)

$$\mu_s(A) = \min_{\substack{S \subset \{1, \dots, d\} \\ \operatorname{Card}(S) \le s}} \min_{\substack{\|z_{S^c}\|_1 \le \|z_S\|_1 \\ \|z\|_2 = 1}} \|Az\|_2$$

is positive, the following error bound holds:

$$\|\hat{x} - x^*\|_2 \le 2 \frac{\delta \|A\|_2}{\mu_s(A)}.$$

Restricted Singular values and Null Space Property

MCRSV and NSP *Roul17a

Given a matrix $A \in \mathbb{R}^{n \times p}$ and a sparsity level $1 \le s \le d$, if the MCRSV $\mu_s(A)$ is positive, then A satisfies NSP at order s for any constant

$$\alpha \leq \left(1 - \frac{\mu_s(A)}{\|A\|_2}\right)^{-1}$$

Consequence:

MCRSV $\mu_s(A)$ controls

- sharpness for exact recovery
- optimal rate of convergence of restart schemes for exact recovery of s-sparse signals

うして ふゆう ふほう ふほう うらつ

Link to previous computational analysis

MCRSV matches Renegar condition number that measures complexity of optimality certificates of exact recovery of *s*-sparse signals

Beyond ℓ_1 norm

Results generalize to other sparse structures, i.e. group norms and low rank matrices. One retrieves

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

- Sharpness of exact recovery problem
- Generalized Null Space Property
- Generalized Minimal Conically Restricted Singular Values