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Sparse recovery problems

Goal: Recover a signal x, € RY from n noisy linear observations
T
bi = a; x« + ;i
where n; are bounded i.i.d. noise

Assumption:
Xy IS S-sparse i.e.

lIx]lo =Card({i € {1,...,d}:x; #0}) <s < d
Applications:

» Coding/Decoding audio signals, images, ...

» Find explanatory variables for an experiment



Sparse recovery problems

Decoding procedures:
Given b= (by,...,b,)" € R"and A= (ay,...,a,)" € R™¢

> In absence of noise (7 = 0), solve

minimize  ||x]|1

. Exact recover
subject to Ax=b ( Y)
» In presence of noise, solve

minimize  [|x]|1

subject to || Ax — bl» < ||A[l» (Robust recovery)

where ¢ is an estimation of the level of noise and ||Al|2 is the
spectral norm of the observation matrix A

Other procedures : Lasso, Dantzig selector, ...



Sparse recovery problems

Resolution of

minimize  ||x||1

subject to  Ax — b (Exact recovery)

Assumption: Observations are orthonormal, AAT =, so projection on
feasible set is available

Problem: ||x||; is convex but non smooth.




Recovery procedures

Resolution of

minimize  ||x||1

subject to  Ax — b (Exact recovery)

Assumption: Observations are orthonormal, AAT =, so projection on
feasible set is available

Problem: ||x||; is convex but non smooth. Yet it can be smoothed !




Recovery procedures
Smoothing technique:
€
Ixh = sup (xy) — £()= sup (xy) =yl
Iylloe<1 lIylloo <1
f. is
» smooth with constant d/e

> approximates ||.||; uniformly up to §

Optimal algorithm Beck11:

Use accelerated gradient algorithm on f. to solve exact recovery at £/2
Starting from xg overall procedure outputs for an accuracy e after t
iterations X = S(xp, €, t) s.t.

2d|xo — x*||3 €

o —x18 ,
et 2

Given an estimate R > ||xo — X||, with appropriate ¢,

%l = lIx*ll <

[I%llx = lIx*ll. = O(1/1)



Sharpness

Idea:
||x||1 is sharp so exploit it on set {x : Ax = b} by restarts to

minimize  ||x||1

subject to Ax = b (Exact recovery)

In the following:
For x* s-sparse such that Ax* = b, assume

Xl = Xl > ~llx = X"l (Sharp)

for any x # x* such that Ax = b, and some 0 < v < 1.
Remark: x* unique minimizer of the decoding procedure

Plan:
» Analyze restart schemes to converge to x*

» Link sharpness to recovery performance by computing ~



Scheduled restarts

Scheme: Run universal smoothing procedure S, stop it, restart it from
last iterate with new target accuracy

Schedule both times t; of restart and target accuracies ¢, from xq € R9,

Xk = S(Xk—1, €k, tk)



Scheduled restarts

Optimal schedule *Roul17a
Given A € R"™P and x* € RP, assume there exists v > 0

Xl = Xl > yllx = x|,

for any x # x* such that Ax = Ax* = b
Given g9 > ||xoll1 — ||x*||1, run scheduled restarts with

ek =e exs1,  tk =2e\/p/y

Then after R restarts and N = Zf.il t, total iterations, it outputs X s.t.

o % ¥
180 — [ < exp (—e/v) -
2\/p

So the optimal complexity is in O(y~!loge) iterations to achieve ¢
accuracy



Scheduled restarts

In practice v is unknown

Practical scheme (log-scale grid search):
» Given a fixed budget of iterations N, run for i € [1,..., |log, N]]

Scheduled restart with t, = C;  where C; = K
» Stop each scheme after N iterations
Analysis:
» Needs N big enough for restarts to be relevant

> Cost of the grid search log,(N)
» One scheme achieves

18] = [Ix 12 < exp (—MeN)



Numerical lllustration
Comparison to plain smoothing technique implementation (called NESTA

Beck11)
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> Best restarted NESTA (solid red line) for a budget of 500 iterations
> Overall cost of the practical restart schemes (dashed red line)

» Plain NESTA implementation with low accuracy ¢ = 107" (dotted black
line) and higher accuracy ¢ = 10~2 (dash-dotted blackline)



Numerical Illustration

Comparison to heuristic of restarts based on stagnancy of objective
values (called continuation steps Beck11)
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> Best restarted NESTA (solid red line) for a budget of 500 iterations

> Overall cost of the practical restart schemes (dashed red line)

» NESTA with 5 continuation steps (dotted blue line)

Crosses represent the restart occurrences. Left: n = 200. Right : n = 300.



Recovery performance

Statistical point of view:
Given a s-sparse vector x*, what are the assumptions on the observation
matrix A such that x* can be recovered by solving

minimize  ||x||1

subject to Ax =b (Exact recovery)

or such that x* can be approximated by solving

minimize || x||1

subject to  ||Ax — b||2 < J||All2 (Robust recovery)

where b = Ax*

References: Most famous is the Restricted Isometric Property Cand06a,
lots exist, here focus on Null Space Property and Minimal Conically
Restricted Singular Values



Null Space Property

Null Space Property Cohe09

A matrix A satisfies the Null Space Property (NSP) at order s with
constant « > 1 if for any subset S C {1,...d}, with Card(S) <'s, and
any z € Null(A) \ {0},

al[zslly < llzs |1,

where Null(A) is the null space of A, and zs € R9 denotes the vector
obtained by zeroing all coefficients of z that are not in S.

Recovery guarantees:
Necessary and sufficient condition for exact recovery of any s-sparse
vector

Proof for sufficiency:
Comes from sharpness !



Sharpness and Null Space Property

Null Space Property < Sharpness *Roul17a

Given an observation matrix A € R"*P satisfying NSP at order s with
constant « > 1, if the original signal x* is s-sparse, then for any x € RP
satisfying Ax = Ax*, x # x*, we have

a—1
x|l = |Ix*|l. > x —x* Shar
el = Il > = 1 (Sharp)
Conversely, if A is such that (Sharp) is satisfied on every s-sparse vectors,
then it satisfies NSP at order s. )
Consequences:

» NSP controls optimal convergence rate of restart

» Can use statistical analysis of NSP



Recovery threshold

Recovery threshold

Denote sy = 1/ diam(B¢ N Null(A))? where B¢ is the ¢; unit ball in R9,
then A satisfies (NSP) at any s < sa with

a=2y/spa/s—1>1

Consequence: Optimal rate of convergence of restart scheme in terms
of recovery threshold

" N e
I = 1l < e (~(1- VETo2) 55 )



Oversampling ratio

Random observations:
For random observation matrix A, diam(B¢ N Null(A)) < ¢ % with
high probability, where ¢ > 0 is an absolute constant. Therefore

> sa > n/(c?logd)

» O(slog d) observations are sufficient to recover any s-sparse signals

Consequence: Optimal rate of convergence of restart scheme to decode
s-sparse signals in terms of oversampling ratio

n « slog d e
%111 = x*[1 < exp <— (1—cﬁ> zﬁN> -




Numerical Illustration
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Best restart scheme found by grid search for increasing values of the
oversampling ratio 7 = n/s.

Left : sparsity s = 20 fixed. Right : number of samples n = 200 fixed.



Robust Recovery

Robust Recovery Performance Chan12

Given a coding matrix A € R"*? and an original s-sparse signal x*,
suppose we observe b = Ax* 4+ w where ||w|2 < §||A|2 and denote % an
optimal solution of

minimize || x||1

subject to | Ax — bll» < 6]l (Robust recovery)

If the Minimal Conically Restricted Singular Value (MCRSV)

A) = min min Az
HolA) = G T e T, 1422
Card(S)<s  ||zl2=1

is positive, the following error bound holds:

A
% — < 220l
ps(A)




Restricted Singular values and Null Space Property

MCRSV and NSP *Roul17a

Given a matrix A € R"*P and a sparsity level 1 < s < d, if the MCRSV
1s(A) is positive, then A satisfies NSP at order s for any constant

os(-84)

Consequence:
MCRSV ps(A) controls

» sharpness for exact recovery

» optimal rate of convergence of restart schemes for exact recovery of
s-sparse signals



Additional remarks

Link to previous computational analysis
MCRSV matches Renegar condition number that measures complexity of
optimality certificates of exact recovery of s-sparse signals

Beyond /; norm
Results generalize to other sparse structures, i.e. group norms and low
rank matrices. One retrieves

» Sharpness of exact recovery problem
» Generalized Null Space Property
» Generalized Minimal Conically Restricted Singular Values
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