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Optimization Oracles

Oracles for an objective f

Gradient oracle
Rationale: Uses linear approx. of f around param. w
— oracle accuracy fixed by smoothness properties of f X
Implementation: Uses decomposition of f into elementary operations
— flexible and fast implementation by automatic differentiation v

Moreau envelope based oracle (Moreau 1962, Nesterov 2005, Lin et al. 2018)
Rationale: Uses regularized minimization of f around param. w
— oracle accuracy controlled by optimization subroutine v
Implementation: Requires a priori solving an optimization subproblem
— does not exploit decomposition of f into elementary operations X

Can we develop approximate computations of Moreau envelopes
that exploit the decomposition of the objective?
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Moreau Gradients
Moreau Gradient of f on w with stepsize «

Venv(af)(w) = argminaf (w — v) + ||v]|3/2
veRrd
o Well-defined for 0 < a < & s.t. v af(w — v) + ||v||3/2 is convex
e Maximal stepsize & larger than gradient descent stepsize
e Necessary optimal cond.: w* € argmin,, f(w) = Venv(af)(w*) =0
e Generally not available in closed form

Approximate Moreau Gradient Optimization
w ) = W) _ G env(af)(w™)

for @env(af)(w) ~ Venv(af)(w)

e Direct implementation: ¥V env(af)(w) = Ax (af(w =)+ -13/2)
for Ax(g) the k™ iterate of algo. A on g such as gradient descent

e Here: Implement f in a differentiable programming framework that gives
access to Moreau gradients in a backward pass like

out = func(w) m_grad = autom grad(out, w, alpha)

with m_grad=V env(af)(w) computed from graph of comput. of f.
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Differentiable Programming for Moreau Gradients

Compute Moreau gradient of ho f for f
with dynamical structure

w.

OO

f(wi,...,w;) = xr,

s.t. xy = (ﬁt(Wt,thl)

Forward pass
e Compute f through func. ¢
e Store comput. ¢: and inputs x:, w;

8

Backward pass
e Back-prop. \: using rule BP below

on ¢¢(wr,-) or de(-, xt)
starting from A\. = BP(h)(x;, @)

----- Use stored info

o GBP(¢)(z,\) = Vo(z)A -

— classical backprop. rule in auto.-diff.

© MBP(¢)(z,\) = arg min, AT g(z—y)+|lyl3/2 = Venv(\T $)(2)
— generalized Moreau gradient

o IBP(¢)(z, \) & argmin, [[¢(z—y)—d(2)+ |3 +]yl13/2
— regularized inverse as in target prop. Lee et al (2015)

Output

{GBP, MBP,IBP}
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Chain Rule

Moreau Gradient Rule for composition ho f
Under suitable assumptions, comput. of Moreau gradient decomposes as

Venv(aho f)(w) = argmin {/\“‘Tf(w —v)+ ||V||§/2}

y

where  \" = argmax —(h)*()\) 4+ env()\ | F)(w)

A

e Proximal grad. step to compute \* gives MBP rule:
— Venv(aho f)(w) =~ Venv(\T f)(w) for A = Venv(ah)(f(w))

Regularized Inverse Rule for composition ho f
Comput. of Moreau gradient amounts to solve

min af(g(w) = A) + p(2) for p(1) = min { | vIB/2 : g(w)—g(w—v)=)}
e Incremental proximal point to compute \* gives IBP rule:
— Venv(aho f)(w) = IBP(f)(w; \) for A = Venv(ah)(f(w))
Implementation
Use k iterations of algo. A such as grad.descent to approx. BP rule such as
MBP(f)(w, \) = Ax(\ " f(w =) + | - [3/2)
A=GD, k=1 — MBP(f)(w,\) = Vf(w)\
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Experiments

— D M-GD
107
Moreau Gradient Descent (M-GD) ‘
e Nonlinear control: swinging up pendulum ;5 5 \A
e Use approx. Moreau grad. on output of \
deterministic dynamical system 0 '\A’v::\
Iteration
— sGD M-SGD
Stoch. Moreau Grad. Desc. (M-SGD)
e MLP on CIFAR10 kL
e Compute oracles on mini-batches S, £ \
i.e., Venv(aFs)(w) for Fs(w)=>", ¢ fi(w) =, -
0 10 20 30
Epochs
Adam with Moreau Grad. (M-Adam) — Adam M-Adam

e AIICNN ConvNet on CIFAR10
e Compute oracles on mini-batches S,

ie., Venv(an)(W) for Fs(w)= Z:es i(w)
e Plug oracle directions in Adam optimizer

)

o
L

Train Loss
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