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Optimization Oracles

Oracles for an objective f
... ...

Gradient oracle
Rationale: Uses linear approx. of f around param. w
→ oracle accuracy fixed by smoothness properties of f 7

Implementation: Uses decomposition of f into elementary operations
→ flexible and fast implementation by automatic differentiation 3

Moreau envelope based oracle (Moreau 1962, Nesterov 2005, Lin et al. 2018)

Rationale: Uses regularized minimization of f around param. w
→ oracle accuracy controlled by optimization subroutine 3

Implementation: Requires a priori solving an optimization subproblem
→ does not exploit decomposition of f into elementary operations 7

Can we develop approximate computations of Moreau envelopes
that exploit the decomposition of the objective?
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Moreau Gradients

Moreau Gradient of f on w with stepsize α

∇ env(αf )(w) = arg min
v∈Rd

αf (w − v) + ‖v‖2
2/2

• Well-defined for 0 ≤ α < ᾱ s.t. v 7→ ᾱf (w − v) + ‖v‖2
2/2 is convex

• Maximal stepsize ᾱ larger than gradient descent stepsize

• Necessary optimal cond.: w∗ ∈ arg minw f (w)⇒ ∇ env(αf )(w∗) = 0

• Generally not available in closed form

Approximate Moreau Gradient Optimization

w (k+1) = w (k) − ∇̂ env(αf )(w (k))

for ∇̂ env(αf )(w) ≈ ∇ env(αf )(w)

• Direct implementation: ∇̂ env(αf )(w) = Ak

(
αf (w − ·) + ‖ · ‖2

2/2
)

for Ak(g) the k th iterate of algo. A on g such as gradient descent

• Here: Implement f in a differentiable programming framework that gives
access to Moreau gradients in a backward pass like

out = func(w) m grad = auto m grad(out, w, alpha)

with m grad=∇ env(αf )(w) computed from graph of comput. of f .
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Differentiable Programming for Moreau Gradients

Compute Moreau gradient of h ◦ f for f
with dynamical structure

f (w1, . . . ,wτ ) = xτ ,

s.t. xt = φt(wt , xt−1)

Forward pass
• Compute f through func. φt

• Store comput. φt and inputs xt ,wt

Backward pass
• Back-prop. λt using rule BP below

on φt(wt , ·) or φt(·, xt)
starting from λτ = BP(h)(xτ , α)

� GBP(φ)(z, λ) = ∇φ(z)λ
→ classical backprop. rule in auto.-diff.

�MBP(φ)(z, λ) ≈ arg miny λ
>φ(z−y)+‖y‖2

2/2 =∇ env(λ>φ)(z)
→ generalized Moreau gradient

� IBP(φ)(z, λ) ≈ arg miny ‖φ(z−y)−φ(z)+λ‖2
2+‖y‖2

2/2

→ regularized inverse as in target prop. Lee et al (2015)

... ...

... ...

BP BP BP BP ......

BP BP BP 

Forward pass Use stored info. Backward pass Output 
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Chain Rule
Moreau Gradient Rule for composition h ◦ f
Under suitable assumptions, comput. of Moreau gradient decomposes as

∇ env(αh ◦ f )(w) = arg min
y

{
λ∗
>
f (w − v) + ‖v‖2

2/2
}

where λ∗ = arg max
λ

−(αh)∗(λ) + env(λ>f )(w)

• Proximal grad. step to compute λ∗ gives MBP rule:
→ ∇ env(αh ◦ f )(w) ≈ ∇ env(λ>f )(w) for λ = ∇ env(αh)(f (w))

Regularized Inverse Rule for composition h ◦ f
Comput. of Moreau gradient amounts to solve

min
λ

αf (g(w)− λ) + p(λ) for p(λ) = min
{
‖v‖2

2/2 : g(w)−g(w−v)=λ
}

• Incremental proximal point to compute λ∗ gives IBP rule:
→ ∇ env(αh ◦ f )(w) ≈ IBP(f )(w ;λ) for λ = ∇ env(αh)(f (w))

Implementation
Use k iterations of algo. A such as grad.descent to approx. BP rule such as

MBP(f )(w , λ) ≈ Ak(λ>f (w − ·) + ‖ · ‖2
2/2)

A = GD, k = 1 → MBP(f )(w , λ) ≈ ∇f (w)λ
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Experiments

Moreau Gradient Descent (M-GD)

• Nonlinear control: swinging up pendulum
• Use approx. Moreau grad. on output of

deterministic dynamical system

Stoch. Moreau Grad. Desc. (M-SGD)

• MLP on CIFAR10
• Compute oracles on mini-batches S ,

i.e., ∇̂ env(αFS)(w) for FS(w)=
∑

i∈S fi (w)

Adam with Moreau Grad. (M-Adam)

• AllCNN ConvNet on CIFAR10
• Compute oracles on mini-batches S ,

i.e., ∇̂ env(αFS)(w) for FS(w)=
∑

i∈S fi (w)
• Plug oracle directions in Adam optimizer
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