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•Smoothing an objective by a Moreau envelope can enhance the capa-
bilities of gradient-based methods (Nesterov (2005), Lin et al (2018))
•But computing the Moreau envelope may be as expensive as minimizing

the objective...
•How to exploit the computational structure of an objective to approxi-

mate a Moreau envelope in a differentiable programming framework?

Idea

Overview Consider an objective f
•Gradient-based algo. use linear approx. of f
→ oracle accuracy fixed by smoothness prop. of f
•Algo. based on Moreau-envelope use regularized min. of f
→ oracle accuracy controlled by optimization subroutine

Moreau Envelope of αf on x

env(αf )(x) = inf
y∈Rd

αf (x− y) + ‖y‖2
2/2

well-defined for 0 ≤ α < ᾱ s.t. y 7→ ᾱf (x− y) + ‖y‖2
2/2 is convex

Moreau Gradient of f on x with stepsize 0 ≤ α < ᾱ

∇ env(αf )(x) = arg min
y∈Rd

αf (x− y) + ‖y‖2
2/2

•Maximal stepsize ᾱ larger than gradient descent stepsize
•Necessary optimal cond.: x∗ ∈ arg minx f (x)⇒ ∇ env(αf )(x∗) = 0

•Generally not available in closed form

Approximate Moreau Gradient Optimization

x(k+1) = x(k) − ∇̂ env(αf )(x(k))

for ∇̂ env(αf )(x) ≈ ∇ env(αf )(x)

•Direct implementation:

∇̂ env(αf )(x) = Ak
(
αf (x− ·) + ‖ · ‖2

2/2
)

for Ak(h) the kth iterate of algo. A on h such as gradient descent
•Here: Implement f in a differentiable programming framework that

gives access to Moreau gradients in a backward pass like

y = func(x)

m grad = auto m grad(y, x, alpha)

with m grad=∇ env(αf )(x) computed from graph of comput. of f .

Moreau Gradient

Consider a function f with a dynamical structure

f (w) = xτ ,

s.t. xt = φt(wt, xt−1) for t = 1, ..., τ,w = (w1, . . . , wτ)

for x0 fixed as in, e.g., deep learning or nonlinear control.
Differentiable Programming of an objective h ◦ f

... ...

BP BP BP BP ......

BP BP BP 

Forward pass

Use stored info.

Backward pass

Output 

1. In a forward pass, compute f step by step through the functions φt,
store the intermediate computations φt with their inputs xt, wt

2. In a backward pass, back-propagate co-state variables λt using one
of the following back-propagation rule BP on φt(wt, ·) or φt(·, xt)
starting from λτ = BP(h)(xτ , α)

•GBP(f )(x, λ) = ∇f (x)λ

→ classical back-propagation rule used in auto.-diff.
•MBP(f )(x, λ) = arg miny λ

>f (x− y) + ‖y‖2
2/2

→ generalized Moreau gradient for multivariate function
• IBP(f )(x, λ) = arg miny ‖f (x− y)− f (x) + λ‖2

2 + ‖y‖2
2/2

→ regularized inverse as in target propagation Lee et al (2015)
3. Plug output oracle directions (gt)

τ
t=1 in optimizer like SGD, Adam, . . .

Note: Can mix BP procedures such as using
GBP(h), GBP(φt(wt, ·)), IBP(φt(·, xt−1)) as Frerix et al (2018)

Implementation
Use k iterations of algo. A such as grad.descent to approx. BP such as

MBP(f )(x, λ) ≈ Ak(λ>f (x− ·) + ‖ · ‖2
2/2)

Overall complexity of oracle: k times more than classical backprop.
1 Forward pass

Inputs: Function f parameterized
by (φt)

τ
t=1, input x0, param. (wt)

τ
t=1

for t = 1, . . . , τ do
Compute xt = φt(wt, xt−1)
Store xt−1, wt, φt

end for
Output: Function eval. xτ
Stored: Comput. (xt−1, wt, φt)

τ
t=1

2 Backward pass
Inputs: Stored (xt−1, wt, φt)

τ
t=1, out-

put xτ , objective h, stepsize α
Initialize λτ = BP(h)(xτ , α)
for t = τ, . . . , 1 do

Get λt−1= BP(φt(wt, ·))(xt, λt)
Get gt= BP(φt(·, xt−1))(wt, λt)

end for
Output: Oracle directions (gt)

τ
t=1.

Differentiable Programming
Moreau Gradient Rule for composition h ◦ f
Under suitable assumptions, comput. of Moreau gradient decomposes as

∇ env(αh ◦ f )(x) = arg min
y

{
λ∗>f (x− y) + ‖y‖2

2/2
}

where λ∗ = arg max
λ
−(αh)∗(λ) + env(λ>f )(x)

• Proximal grad. step to compute λ∗ gives MBP rule:
→ ∇ env(αh ◦ f )(x) ≈ ∇ env(λ>f )(x) for λ = ∇ env(αh)(f (x))

Regularized Inverse Rule for composition h ◦ f
Comput. of Moreau gradient amounts to solve

min
λ

αf (g(x)−λ)+p(λ) for p(λ) = min
{
‖y‖2

2/2 : g(x)−g(x−y)=λ
}

• Incremental proximal point to compute λ∗ gives IBP rule:
→ ∇ env(αh ◦ f )(x) ≈ IBP(f )(x;λ) for λ = ∇ env(αh)(f (x))

Chain Rule

Moreau Gradient Descent (M-GD)

• Nonlinear control: swinging up pendulum
• Use approx. Moreau grad. on output of

deterministic dynamical system

Stoch. Moreau Grad. Desc. (M-SGD)

• MLP on CIFAR10
• Compute oracles on mini-batches S,

i.e., ∇̂ env(αFS) for FS(w)=
∑

i∈S fi(w)

Adam with Moreau Grad. (M-Adam)

• AllCNN ConvNet on CIFAR10
• Compute oracles on mini-batches S,

i.e., ∇̂ env(αFS) for FS(w)=
∑

i∈S fi(w)

• Plug oracle directions in Adam optimizer
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