UNIVERSITY of WASHINGTON

- Smoothing an objective by a Moreau envelope can enhance the capabilities of gradient-based methods (Nesterov (2005), Lin et al (2018))
- But computing the Moreau envelope may be as expensive as minimizing the objective...
- How to exploit the computational structure of an objective to approximate a Moreau envelope in a differentiable programming framework?

Moreau Gradient

Idea

Overview Consider an objective f

- Gradient-based algo. use linear approx. of f \rightarrow oracle accuracy *fixed* by smoothness prop. of f
- Algo. based on Moreau-envelope use regularized min. of f \rightarrow oracle accuracy *controlled* by optimization subroutine

Moreau Envelope of αf on x

$$\operatorname{env}(\alpha f)(x) = \inf_{y \in \mathbb{R}^d} \alpha f(x - y) + \|y\|_2^2/2$$

well-defined for $0 \le \alpha < \bar{\alpha}$ s.t. $y \mapsto \bar{\alpha} f(x-y) + \|y\|_2^2/2$ is convex **Moreau Gradient** of f on x with stepsize $0 \le \alpha < \bar{\alpha}$

$$\nabla \operatorname{env}(\alpha f)(x) = \underset{y \in \mathbb{R}^d}{\operatorname{arg\,min}} \alpha f(x - y) + \|y\|_2^2/2$$

- Maximal stepsize $\bar{\alpha}$ larger than gradient descent stepsize
- Necessary optimal cond.: $x^* \in \arg\min_x f(x) \Rightarrow \nabla \operatorname{env}(\alpha f)(x^*) = 0$
- Generally not available in closed form

Approximate Moreau Gradient Optimization

$$x^{(k+1)} = x^{(k)} - \widehat{\nabla} \operatorname{env}(\alpha f)(x^{(k)})$$

for $\nabla \operatorname{env}(\alpha f)(x) \approx \nabla \operatorname{env}(\alpha f)(x)$

• Direct implementation:

$$\widehat{\nabla} \operatorname{env}(\boldsymbol{\alpha} f)(x) = \mathcal{A}_k \left(\boldsymbol{\alpha} f(x - \cdot) + \|\cdot\|_2^2 / 2 \right)$$

for $\mathcal{A}_k(h)$ the k^{th} iterate of algo. \mathcal{A} on h such as gradient descent • Here: Implement f in a differentiable programming framework that gives access to Moreau gradients in a backward pass like

with m_grad= $\nabla \operatorname{env}(\alpha f)(x)$ computed from graph of comput. of f.

Differentiable Programming à la Moreau

Vincent Roulet, Zaid Harchaoui University of Washington

Differentiable Programming

 $f(\boldsymbol{w}) = x_{\tau},$

- 1. In a forward pass, compute f step by step through the functions ϕ_t , store the intermediate computations ϕ_t with their inputs x_t, w_t
- 2. In a backward pass, back-propagate co-state variables λ_t using one of the following back-propagation rule BP on $\phi_t(w_t, \cdot)$ or $\phi_t(\cdot, x_t)$ starting from $\lambda_{\tau} = BP(h)(x_{\tau}, \alpha)$
- GBP $(f)(x, \lambda) = \nabla f(x)\lambda$ \rightarrow classical back-propagation rule used in auto.-diff.
- MBP $(f)(x, \lambda) = \arg \min_{y} \lambda^{\top} f(x y) + ||y||_2^2/2$ \rightarrow generalized Moreau gradient for multivariate function
- IBP $(f)(x, \lambda)$ = arg min_y $||f(x y) f(x) + \lambda||_2^2 + ||y||_2^2/2$ \rightarrow regularized inverse as in target propagation Lee et al (2015)

3. Plug output oracle directions $(g_t)_{t=1}^{\tau}$ in optimizer like SGD, Adam, ... *Note:* Can mix BP procedures such as using

GBP(h), GBP($\phi_t(w_t, \cdot)$), IBP($\phi_t(\cdot, x_{t-1})$) as Frerix et al (2018)

Implementation

Use k iterations of algo. \mathcal{A} such as grad.descent to approx. BP such as $MBP(f)(x,\lambda) \approx \mathcal{A}_k(\lambda^{\top} f(x-\cdot) + \|\cdot\|_2^2/2)$

Overall complexity of oracle: k times more than classical backprop.

Inputs: Function f parameterized In	put
by $(\phi_t)_{t=1}^{\tau}$, input x_0 , param. $(w_t)_{t=1}^{\tau}$ put	$t x_{ au}$
for $t = 1, \ldots, \tau$ do Ini	tial
Compute $x_t = \phi_t(w_t, x_{t-1})$ for	• t =
Store x_{t-1}, w_t, ϕ_t	Ge
end for	Ge
Output: Function eval. x_{τ} en	d fo
Stored: Comput. $(x_{t-1}, w_t, \phi_t)_{t=1}^{\tau}$ Ou	itpi

Consider a function f with a dynamical structure

s.t. $x_t = \phi_t(w_t, x_{t-1})$ for $t = 1, ..., \tau, w = (w_1, ..., w_{\tau})$

ward pass ts: Stored $(x_{t-1}, w_t, \phi_t)_{t=1}^{\tau}$, out-, objective h, stepsize α lize $\lambda_{\tau} = BP(h)(x_{\tau}, \boldsymbol{\alpha})$ $= \tau, \ldots, 1$ do et $\lambda_{t-1} = BP(\phi_t(w_t, \cdot))(x_t, \lambda_t)$ et $g_t = BP(\phi_t(\cdot, x_{t-1}))(w_t, \lambda_t)$ **ut:** Oracle directions $(g_t)_{t=1}^{\tau}$.

Hongzhou, L., Mairal, J., Harchaoui Z. (2018). Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice. Journal of Machine Learning Research. Lee, D., Zhang, S., Fischer, A., Bengio, Y. (2015). Difference Target Propagation. Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Frerix, T., Möllenhoff, T., Moeller, M., Cremers, D. (2018). Proximal Backpropagation. International Conference on Learning Representations.

Chain Rule