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ABSTRACT

The notion of a Moreau envelope is central to the analysis
of first-order optimization algorithms for machine learn-
ing and signal processing. We define a compositional
calculus adapted to Moreau envelopes and show how to
apply it to deep networks, and, more broadly, to learn-
ing systems equipped with automatic differentiation and
implemented in the spirit of differentiable programming.

Index Terms— Moreau envelope, differentiable pro-
gramming, mathematical optimization, deep learning.

Introduction
We consider nonlinear dynamical optimization problems,
characterized by a function f , that, given τ mappings
φt, an initial point x0, and a sequence of variables w =
(w1, . . . , wτ ), outputs

f(w, x0) = xτ , (1)
s.t. xt = φt(wt, xt−1) for t = 1, ..., τ.

Such structure typically arises in, e.g., deep learning
problems, where φt are layers and w1, . . . , wτ are the
weights of all layers, and in nonlinear discrete con-
trol problems, where φt are nonlinear dynamics and
w1, . . . , wτ represent a sequence of controls. Given a
dynamical structure (1), the optimization problem then
consists in solving minw h(f(w, x0)) for h a cost on the
output of the dynamical system.

Standard gradient-based optimization methods can
be used to solve such problems. Obtaining the gradi-
ent then amounts to applying the chain-rule, which is
nowadays usually implemented using automatic differ-
entiation for deep networks and other complex models in
a differentiable programming framework [1, 2, 3].

As differentiable programming stands out as a com-
putational framework tailored for training models using
first-order optimization, one may ask how the notion of
Moreau envelope could fit into it and expand its scope.

Indeed, the notion of Moreau envelope [4, 5, 6, 7, 8,
9] has arisen as a central notion in the analysis of first-

order optimization algorithms for machine learning [10,
11, 12]. To blend Moreau envelopes into differentiable
programming, one needs to define a calculus adapted to
Moreau envelopes. We propose a framework to define
such a calculus and show how to integrate it within differ-
entiable programming. We show how previous proposals
of smoother alternatives to gradient back-propagation fit
into our framework. We present numerical results in deep
learning and nonlinear control and deep learning. De-
tailed proofs and additional details can be found in the
longer version [13].

Related work. The computational building blocks
we consider are similar to the ones considered in variants
of gradient back-propagation, which can be traced back
to the now called target propagation [14, 15, 16, 17]. Tar-
get propagation can be described as using approximate
inverses of layers when computing the gradient of a deep
network [18, 19, 20]. The moving targets that minimize
the overall objective are back-propagated via approxi-
mate layer inverses. The layer weights are then updated
by minimizing the distance between the output of the
layer and the given moving target. These algorithms were
found to be effective in some settings and were, for the
most part, motivated by empirical observations. Penal-
ized formulations of the training problem have also been
considered to decouple the optimization of the weights
in a distributed way or using an ADMM approach [21,
22, 23]. Finally, our framework encompasses the proxi-
mal back-propagation algorithm of [24] which mixes the
classical gradient back-propagation and a proximal step
to update the weights of a deep forward network, to get a
proximal-type gradient back-propagation.

1. DIFFERENTIABLE PROGRAM FOR THE
MOREAU ENVELOPE

Key to the minimization of dynamical systems of the
form (1) is the availability of first-order information via
automatic differentiation in a differentiable programming
framework.
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Algorithm 1 Forward pass
1: Inputs: Function f parameterized by (φt)

τ
t=1 in (1),

input x0, parameters (wt)τt=1

2: for t = 1, . . . , τ do
3: Compute xt = φt(wt, xt−1)
4: Store xt−1, wt, φt
5: end for
6: Output: Final result xτ
7: Stored: Intermediate comput. (xt−1, wt, φt)τt=1

Formally, a differentiable program P implements the
evaluation of a function f and enables the computation of
any gradient-vector product on the evaluated point, i.e.,

P :

{
Rd → Rm × (Rm → Rd)

x 7→ (f(x), λ 7→ ∇f(x)λ) .

We aim to define a similar procedure for computing the
gradient of the Moreau envelope of a function that can be
be decomposed as in (1).

Moreau envelope. The Moreau envelope defines an
oracle through the minimization of the function rather
than using a linear approximation of the objective [4, 25].
Formally, for a real function f : Rd → R and α > 0
such that x 7→ αf(x) + ‖x‖22/2 is strongly convex1, the
Moreau envelope is defined as

env(αf)(x) = inf
y∈Rd

{
αf(x+ y) + ‖y‖22/2

}
, (2)

and its gradient, called hereafter a Moreau gradient, is
defined as

∇ env(αf)(x) = − argmin
y∈Rd

{
αf(x+ y) + ‖y‖22/2

}
.

The parameter α acts as a step-size for the oracle and is
part of the definition of the oracle. In particular, note that
α∇ env(f)(x) 6= ∇ env(αf)(x). The Moreau envelope
and its gradient yield smooth surrogates of the function
and its gradient at a cost of solving (2).

Approximate envelope. In practice, one usually ap-
proximates the Moreau envelope using an optimization
algorithm; see, e.g., [11]. Namely, for f differentiable
and α > 0 such that x 7→ αf(x) + ‖x‖22/2 is strongly
convex, the Moreau gradient can be approximated as

∇ env(αf)(x)=− lim
k→+∞

Ak
(
αf(x+ ·) + ‖ · ‖22/2

)
,

where Ak (h) is the kth output of an algorithm A, such
as gradient descent, applied to minimize a function h.

1The Moreau envelope is guaranteed to exist under weaker assump-
tions; we simplify the conditions here for the exposition.

Algorithm 2 Backward pass
1: Inputs: Stored (xt−1, wt, φt)

τ
t=1, last state xτ and

objective h.
2: Initialize λτ = BP(h)(xτ , 1)
3: for t = τ, . . . , 1 do
4: Compute λt−1 = BP(φt(wt, ·))(xt, λt)
5: Compute gt = BP(φt(·, xt))(wt, λt)
6: end for
7: Output: Oracle directions (gt)τt=1.

Moreau gradient for multivariate functions. For
a multivariate function f : Rd → Rm, a classical gra-
dient encodes the linear form λ → ∇(λ>f)(x). Simi-
larly, we define the Moreau gradient of f as the nonlinear
form λ → ∇ env(λ>f)(x). Note that if f is linear, the
Moreau gradient coincides with the usual gradient-vector
product, i.e.,∇ env(λ>f)(x) = ∇f(x)λ.

Our goal in the following is to define a numerical pro-
gram M which implements the Moreau gradient for a
chain of computations (1), i.e.,

M :

{
Rd → Rm × (Rm → Rd)

x 7→ (f(x), λ 7→ ∇ env(λ>f)(x)).

Back-propagation. To implement Moreau gradients
for functions of the form (1), we consider taking advan-
tage of the structure of the problem just as a gradient or-
acle does by using automatic differentiation.

Formally, the forward algorithm evaluates the func-
tion while keeping in memory the intermediate compu-
tations and the associated inputs as presented in Algo. 1.
During the backward pass in Algo. 2, we consider pro-
cedures that either use gradient-vector products, back-
propagate the Moreau gradients or use regularized inver-
sions of the intermediate computations. Namely, for a
function f evaluated at x and a direction λ, we consider
back-propagation procedures BP of the form

GBP(f)(x, λ)=∇f(x)λ
MBP(f)(x, λ)=− argmin

y∈Rd
λ>f(x+ y) + ‖y‖22/2

IBP(f)(x, λ)=− argmin
y∈Rd

‖f(x+y)−f(x)+λ‖22+γ‖y‖22,

where IBP is a regularized inversion akin to the virtual
target propagation rule motivated in the next section. Dif-
ferent back-propagation procedures can be used at dif-
ferent stages. For example, GBP can be used on lines 2
and 4, while IBP can be used on line 5, which recovers
the algorithm ProxProp of [24]. Once oracle directions
(gt)

τ
t=1 are computed, the weights/controls are updated

as
wnext
t = wt − αgt, for t ∈ {1, . . . , τ}. (3)
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Fig. 1. Detailed computational process.

2. CHAIN RULES

Consider the computation of the Moreau gradient of a
single composition of g : Rd → Rk and f : Rk → R.
Provided that f is convex, f, g are Lipschitz-continuous
and smooth, and α > 0 is small enough, denoting (αf)∗

the convex conjugate of αf , we have

∇ env(αf ◦ g)(x)=− argmin
y∈Rd

{
µ>∗ g(x+y)+

1

2
‖y‖22

}
= ∇ env(µ>∗ g)(x), (4)

where µ∗ = argmax
µ∈Rk

−(αf)∗(µ) + env(µ>g)(x). (5)

Compare (4) to the classical gradient chain rule

∇(αf ◦ g)(x)=− argmin
y∈Rd

{
µ>∇g(x)>(x+y)+1

2
‖y‖22

}
where µ = ∇f(g(x))λ. We retrieve the same structure,
except that (i) for the Moreau gradient the dual direction
µ∗ is given by solving an optimization problem, (ii) the
classical gradient minimizes a linearized approximation
of the inner function along this direction, while for the
Moreau gradient the inner function itself is used.

Denoting for x fixed, e(µ) = env(µ>g)(x), by ap-
proximating the solution of (5) by a proximal gradient
step from 0, we get, for some β > 0,

µ∗ ≈ argmax
µ∈Rk

∇e(0)>µ−(αf)∗(µ)− 1

2β
‖µ‖22

=β∇ env((α/β)f)(g(x)).

More generally, for f multivariate, we consider ap-
proximating the Moreau gradient as

∇ env(λ>f ◦ g)(x) ≈ ∇ env(µ̂>g)(x)

where µ̂ = β∇ env((λ/β)>f)(g(x)),

which can be interpreted as a layer-wise proximal point
method on the Lagrangian of the problem defining the
Moreau gradient [13].

The computation of the Moreau gradient can also be
formulated as solving

min
z∈Rk

αf(g(x) + z) + p(z)

for p(z) = min
{
‖y‖22/2 : g(x+y)−g(x)=z

}
. An in-

cremental proximal point method on the above problem,
starting from z = 0, amounts then to computing

z1 = argmin
z∈Rk

{
αf(g(x) + z) +

1

2
‖z‖22

}
z2 = argmin

z∈Rk

{
p(z) +

1

2
‖z − z1‖22

}
= g(x+ ŷ)− g(x)

ŷ = argmin
y∈Rd

{
‖g(x+ y)− g(x)− z1‖22 + ‖y‖22

}
.

We consider then ŷ as an approximation of the Moreau
gradient whose computation can be summarized as

∇ env(αf ◦ g)(x) ≈ ŷ = IBP(g)(x;µ)

where µ = ∇ env(αf)(g(x)).

The computational complexity of using MBP or IBP is
driven by the number of inner iterations used to approxi-
mate the minimizers. Namely, if we use KGD steps of a
gradient descent, the computational complexity of MBP
or IBP is of the order of T (f)+KGDT (∇f), where
T (f) and T (∇f) are the complexities of computing the
layer and its gradient respectively. In particular, by con-
sidering one step of a gradient descent, we retrieve the
gradient-vector product, since we have

∇f(x)λ = −GD1(λ
>f(x+ ·) + ‖ · ‖22/2)

= −GD1(‖f(x+·)−f(x)−λ‖22/2 + ‖ · ‖22/2).
The computations of IBP can also be replaced by an ap-
proximate inverse as done in target propagation.

3. NUMERICAL ILLUSTRATIONS

Nonlinear control of a swinging pendulum. We con-
sider the control of a pendulum to make it swing-up after
a finite time, which can be written as

min
w1,...,wτ

h(xτ )

s.t. xt+1 = φt(wt, xt−1) for t ∈ {1, . . . , τ},
for x0 fixed, where the formulations of φt, h are detailed
in [13]. The horizon τ is usually large to ensure that the
discretization scheme is accurate enough. As many com-
positions are involved, we are interested in the effects of
using approximate Moreau gradients.
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Fig. 2. Gradient descent (GD) vs Moreau gradient descent
(M-GD) on the control of a pendulum. Left: horizon τ = 50,
Right: horizon τ = 100

We compare a gradient descent to our Moreau gradi-
ent algorithm using MBP in lines 2, 4, 5 on the control of
a pendulum in Fig. 2 for various horizons τ . More details
on experimental settings can be found in [13].

Supervised classification with deep networks. For
supervised classification with deep networks, we con-
sider a mini-batch stochastic counterpart to the proposed
algorithm. Namely, we compute approximate Moreau
gradients for mini-batches written as

hm(fm(w, x0)) =
1

m

m∑
i=1

L(yi, ψ(w, x0,i)), (6)

whereL is a smooth loss function, x0 = (x0,1; . . . ;x0,m)
is a mini-batch ofm samples, hm(ŷ) =

∑m
i=1 L(yi, ŷi)/m

for ŷ = (ŷ1; . . . ; ŷm). Here f is the concatenation of a
chain of computations applied to the mini-batch of in-
puts, i.e., f(w, x0) = (ψ(w, x0,1); . . . ;ψ(w, x0,m)).

In Fig. 3, we compare plain mini-batch stochas-
tic gradient descent against a mini-batch approximate
stochastic Moreau gradient descent, i.e., updates (3) on
mini-batches (6) using MBP in lines 2, 4, 5, to train
a deep network on the image classification dataset CI-
FAR10 [26]. We consider a fully connected multi-layer
neural network with hidden layer sizes (4000, 1000, 4000)
with a squared loss and a convolutional neural net-
work architecture as presented by [24] with a logistic
loss. The plots present the minimum of the loss or the
test error obtained so far, i.e., on the y-axis we plot
yk = mini=0,...,k hn(fn(w

(i), x0)), where n is the total
number of samples in the train and w(i) the current set of
parameters.

We observe that the mini-batch stochastic counter-
part of the proposed algorithm compares favorably with
a stochastic gradient descent in both cases.

0 10 20 30
Epochs

2

4

T
ra

in
L

os
s

0 10 20 30
Epochs

0

50

100

T
es

t
E

rr
or

0 10 20 30
Epochs

1.5

2.0

T
ra

in
L

os
s

×102

0 10 20 30
Epochs

0

50

100

T
es

t
E

rr
or

SGD M-SGD

Fig. 3. Stochastic Gradient Descent (SGD) versus Stochas-
tic Moreau Gradient Descent (M-SGD) on deep learning prob-
lems. Top: MLP, Bottom: Convnet
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Fig. 4. Adam with Gradient oracle (Adam GD) versus Adam
with Moreau gradients (Adam M-GD) on CIFAR with AllCNN
architecture.

Stochastic algorithms with momentum. Moreau
gradients define first-order oracles that can be incorpo-
rated in popular algorithms for stochastic training with
momentum such as Adam [27]. We illustrate this by con-
sidering the Proximal BackPropagation algorithm of [24]
which can be seen as a particular implementation of a
Moreau gradient and apply it to the image classification
dataset CIFAR10 using the AllCNN-C architecture [28]
with a logistic loss2. In Fig. 4, we observe that an ap-
proach using Moreau gradients can optimize faster on the
training loss, while an approach with classical gradients
can generalize better in this experiment.

Acknowledgments. This work was supported by NSF
CCF-1740551, NSF DMS-1839371, CIFAR program “Learn-
ing in Machines and Brains”, and faculty research awards.

2A similar experiment was done by [24] on a smaller architecture.
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