Integration methods and Accelerated Optimization Algortihms

Damien Scieur, Vincent Roulet, Francis Bach and Alexandre d'Aspremont

INRIA, Ecole normale superieure, PSL Research University, CNRS

June 6, 2018

Motivation

- Intuition to build convex optimization algorithms sometimes mysterious, e.g. accelerated algorithms
- Continuous time interpretation may help
- Here start from basic gradient flow

$$\dot{x}(t) = -\nabla f(x)$$

- Other interpretations possible through second order derivative equations [Wibosono et al. 2016] but
 - less straightforward
 - not proven to be linked to proper integration methods

Plan

Gradient flow

Integration methods

Proper integration on finite time

Stability in infinite time

Integration view for optimization

Optimization setting

Problem is

minimize f(x)

on variable x where $f \in \mathcal{C}^1(\mathbb{R}^d)$ is

► L-smooth, i.e.

 $\|
abla f(x) -
abla f(y)\|_2 \le L \|x - y\|, \quad \text{for every} \quad x, y \in \mathbb{R}^d$

µ-strongly convex, i.e.

 $\langle
abla f(x) -
abla f(y), x - y
angle \geq \mu \|x - y\|^2$, for every $x, y \in \mathbb{R}^d$

Continuous time translation

Study of curves x(t) satisfying Ordinary Differential Equation (ODE)

$$\begin{aligned} x(0) &= x_0 \\ \dot{x}(t) &= g(x(t)) \end{aligned}$$

where

- g comes from a potential -f, i.e. $g = -\nabla f(x)$
- g is L-Lipschitz, i.e.

$$\|g(x) - g(y)\|_2 \leq L \|x - y\|, \quad ext{for every} \quad x, y \in \mathbb{R}^d$$

• -g is μ -strongly monotone, i.e.

$$-\langle g(x) - g(y), x - y
angle \geq \mu \|x - y\|^2, \quad ext{for every} \quad x, y \in \mathbb{R}^d$$

Properties of the gradient flow

- g Lipschitz \Rightarrow existence and uniqueness of x(t)
- ► -g monotone \Rightarrow uniqueness of equilibrium x^* , s.t. $g(x^*) = 0$ and $x(\infty) = x^*$
- Continuous time rates

$$f(x(t)) - f^* \le (f(x_0) - f^*)e^{-2\mu t}$$

$$\|x(t) - x^*\| \le \|x_0 - x^*\|e^{-\mu t}$$

Gradient flow

Integration methods

Proper integration on finite time

Stability in infinite time

Integration view for optimization

Generally no analytical form for x(t)...

Goal of integration methods:

- Approximate curve x(t) on a finite time interval $[0, t_{max}]$
- Done on a time grid t_k by building sequence x_k s.t. $x_k \approx x(t_k)$
- Here regular grid, $t_k = kh$ with h, the stepsize

Euler's explicit scheme

Idea: Use Taylor expansion at time t

$$x(t+h) = x(t) + h\dot{x}(t) + O(h^2).$$

Neglects second order term, you get Euler's explicit scheme

$$x_{k+1} = x_k + hg(x_k).$$

• For $g(x) = -\nabla f(x)$, corresponds to gradient descent

Euler's implicit scheme

• Idea: Use Taylor expansion at time t + h

$$x(t) = x(t+h) - h\dot{x}(t) + O(h^2).$$

Neglects second order term, you get Euler's implicit scheme

$$x_{k+1} = x_k + hg(x_{k+1}).$$

Requires solution of an implicit problem
 → costly but potentially more precise

For $g(x) = -\nabla f(x)$, corresponds to proximal point algorithm

$$x_{k+1} = \arg\min_{z} \frac{1}{2} ||z - x_k||^2 + hf(z)$$

Multistep schemes

Idea: Use s previous points to build next one

$$x_{k+s} = -\sum_{i=0}^{s-1} \rho_i x_{k+i} + h \sum_{i=0}^{s} \sigma_i g(x_{k+i}), \text{ for } k \ge 0,$$

- If $\sigma_s = 0$ the method is *explicit* otherwise it is *implicit*
- Compactly defined by s initial points and

$$\rho(E)x_k = h\sigma(E)g_k, \quad \text{for every } k \ge 0,$$

where $E : x_k \to x_{k+1}$ is the shift operator, ρ and σ are polynomials of degree s and $\rho_s = 1$.

Gradient flow

Integration methods

Proper integration on finite time

Stability in infinite time

Integration view for optimization

Proper integration

 An integration method effectively integrates the ODE on a finite time interval if

$$\lim_{h \to 0} \|x_k - x(t_k)\| = 0 \quad \text{for any } k \in \llbracket 0, t_{max}/h \rrbracket$$

Error can be decomposed as

 $\|x_k - x_l(t_k)\| \approx$ error in initial points + accumulated local error

- \rightarrow First term controlled by zero-stability
- \rightarrow Second term controlled by consistency

Zero-stability

- Sensitivity to initial conditions controlled by capacity to produce bounded solutions in the case g = 0
- Reduce to study homogeneous differential equation $\rho(E)x_k = 0$

Proposition

A multistep method is zero-stable iff

 $roots(\rho(z))$ lie in the unit disk $roots(\rho(z))$ in the unit circle have multiplicity one

Consistency

Define a measure of local error, called truncation error

$$T(h) = \frac{x(t_{k+s}) - x_{k+s}}{h} \qquad \text{assuming } x_{k+i} = x(t_{k+i}), \ i \in \llbracket 0, s-1 \rrbracket$$

An integration method is said consistent if

$$\lim_{h\to 0}\|T(h)\|=0.$$

Normalization by h because number of errors grows as t_{max}/h

Looking at Taylor expansion, this simplifies

Proposition

A multistep method is *consistent* iff

$$ho(1)=0$$
 and $ho'(1)=\sigma(1)$

Dahlquist theorem

Dahlquist's theorem

Given a multistep method whose starting values $x_i \to x(t_i)$ for $i \in [\![1, s - 1]\!]$, *zero-stability* and *consistency* are necessary and sufficient to ensure on a finite time interval $[0, t_{max}]$ that $||x_k - x(t_k)|| \to 0$ for any k when $h \to 0$

Gradient flow

Integration methods

Proper integration on finite time

Stability in infinite time

Integration view for optimization

Infinite time horizon

- Proper integration is traditionally studied on *finite* time intervals
- Optimization focuses on infinite time horizon $x(\infty) = x^*$
- Needs condition of stability for infinite time horizon
 - Here study in case fo linear gradient flows (quadratic optimization)
 - Gives necessary condition to integrate smooth strongly convex functions

Absolute stability

• Linear ODE with $\mu I \preceq A \preceq LI$ reads

$$\dot{x}(t) = -Ax(t)$$

so $x(\infty) = 0$

- ► For fixed A, h, a method is absolutely stable if it produces bounded sequences x_k when applied to the linear ODE
- After diagonalization of A, reduces to study homogeneous differential equation

$$(\rho + \lambda h\sigma)(E)x_k = 0$$

where $\lambda \in Sp(A)$

Proposition

Region of absolute stability of a multistep method given by ρ,σ is

 $\{h\lambda : \operatorname{roots}(\rho(z) + \lambda h\sigma(z)) | \text{ie in the unit disk} \}$

Convergence rates for linear ODE

- By construction, absolute stability gives also rates of convergence to equilibrium x^{*} for linear ODE given by µI ≤ A ≤ LI
- For a multistep method (ρ, σ) and a stepsize *h*, define

$$r_{\max} = \max_{\lambda \in [\mu, L]} \max\{|r| : r \in \operatorname{roots}(\rho(z) + \lambda h\sigma(z))\}$$

then, if $r_{max} < 1$, built sequence x_k satisfies

$$\|x_k - x^*\| = O(r_{max}^k)$$

Gradient flow

Integration methods

Proper integration on finite time

Stability in infinite time

Integration view for optimization

Analysis of multi-step methods

Analyze one and two step explicit methods through their

- consistency
- zero-stability
- region of absolute stability
- rate of convergence for linear ODE

Intuition:

The larger h, the faster the algorithm

$$f(x_k) - f^* \approx f(x(t_k)) - f^* \le e^{-2\mu kh}(f(x_0) - f^*)$$

One-step explicit method

Euler's explicit scheme

$$x_{k+1} = x_k + hg(x_k).$$

► Zero-stable 🗸

- ► Consistent √
- Optimal step-size for convergence on linear ODE

$$h=\frac{2}{L+\mu}$$

and corresponding rate

$$\|x_k - x^*\| = O\left(\left(\frac{1-\mu/L}{1+\mu/L}\right)^k\right)$$

Two steps methods

- Complete analysis gives a family of two step methods parametrized by one parameter
- Polyak, 1964 heavy ball method and Nesterov, 1983 accelerated method, seen as integration methods, belong to this class
- Polyak's method is optimal among this class (bigger step size and better convergence rates)
- But Polyak do not optimize general smooth strongly convex functions [Lessard et al. 2016]

Stepsize fo acceleratd method

Nesterov, 1983 accelerated gradient reads

$$y_{k+1} = x_k - \frac{1}{L} \nabla f(x_k),$$

$$x_{k+1} = y_{k+1} + \beta(y_{k+1} - y_k).$$

i.e.

$$\beta x_{k} - (1+\beta)x_{k+1} + x_{k+2} = \frac{1}{L} \left(-\beta(-\nabla f(x_{k})) + (1+\beta)(-\nabla f(x_{k+1})) \right)$$

- ► Zero-stable 🗸
- Consistency conditions ($\rho(1) = 0$, $\rho'(1) = \sigma(1)$) give

$$h=\frac{1}{L(1-\beta)}$$

Acceleration explanation

- Gradient descent step size h = 1/L
- Gradient descent approximative rate

$$f(x_k^{\text{grad}}) - f(x^*) \approx f(x(k/L)) - f(x^*) \le (f(x_0) - f(x^*))e^{-2k\frac{\mu}{L}}$$

Nesterov's stepsize

$$h_{\text{nest}} = rac{1}{L(1-eta)} = rac{1+\sqrt{\mu/L}}{2\sqrt{\mu L}} pprox rac{1}{\sqrt{4\mu L}}$$

Nesterov's approximative rate

$$f(x_k^{\mathsf{nest}}) - f(x^*) \approx f(x(k/\sqrt{4\mu L})) - f(x^*) \le (f(x_0) - f(x^*))e^{-k\sqrt{\mu/L}}$$

Illustration

Figure: Integration of a linear ODE with optimal (left) and small (right) step sizes.

Conclusion

- Accelerated optimization methods can be seen as multistep integration schemes applied to the basic gradient flow equation
- Natural interpretation of acceleration:

Larger steps speed up convergence

- Further links btw integration methods and other well-known optimization algorithms:
 - proximal gradient descent,
 - mirror gradient decent,
 - extra-gradient algorithm
 - ...

Future work

- Analyze smooth and strongly convex case (not only quadratics)
- Extend to weakly convex case