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Motivation

» Intuition to build convex optimization algorithms sometimes
mysterious, e.g. accelerated algorithms

» Continuous time interpretation may help

» Here start from basic gradient flow
x(t) = =VIf(x)

» Other interpretations possible through second order derivative
equations [Wibosono et al. 2016] but

> less straightforward
» not proven to be linked to proper integration methods
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Plan

Gradient flow
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Optimization setting

Problem is
minimize  f(x)

on variable x where f € C1(RY) is

» [-smooth, i.e.
IVFf(x) = VFf(y)|l2 < L||x —y||, forevery x,y¢€ RY
> -strongly convex, i.e.

(VF(x) = VF(y),x —y) > pllx — y||>, forevery x,y R
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Continuous time translation

Study of curves x(t) satisfying Ordinary Differential Equation
(ODE)

where
» g comes from a potential —f, i.e. g =—Vf(x)

» g is L-Lipschitz, i.e.
lg(x) — g(¥)ll2 < Lllx = y|l, forevery x,y € R
» —g is u-strongly monotone, i.e.

—(g(x) —g(y).x —y) > plx —y|?, forevery x,yeR?
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Properties of the gradient flow

» g Lipschitz = existence and uniqueness of x(t)

» —g monotone = uniqueness of equilibrium x*, s.t.

g(x*) =0 and x(oc0) = x*

» Continuous time rates

F(x()) = £ < (f(xo) — F)e™

Ix(£) = 7| < [lx0 — x"[le™*
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Plan

Integration methods
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Goal of integration methods

Generally no analytical form for x(t)...
Goal of integration methods:
» Approximate curve x(t) on a finite time interval [0, tmax]
» Done on a time grid tx by building sequence xx s.t. xx =~ x(tx)

» Here regular grid, t, = kh with h, the stepsize
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Euler's explicit scheme

» ldea: Use Taylor expansion at time t
x(t + h) = x(t) + hx(t) + O(h?).
Neglects second order term, you get Euler's explicit scheme
Xk+1 = Xk + hg(xk).

» For g(x) = —Vf(x), corresponds to gradient descent
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Euler's implicit scheme

» ldea: Use Taylor expansion at time t + h
x(t) = x(t + h) — hx(t) + O(h?).
Neglects second order term, you get Euler's implicit scheme
Xk4+1 = Xk + hg(Xk41)-

» Requires solution of an implicit problem
— costly but potentially more precise

» For g(x) = —Vf(x), corresponds to proximal point algorithm

1
Xk+1 = argmin §||z — x¢||? + hf(2)
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Multistep schemes

» Idea: Use s previous points to build next one

s—1 s
Xkt+s = — prxk+i + hZUig(Xk+i), for k >0,
i=0 i=0
» If o0s = 0 the method is explicit otherwise it is implicit
» Compactly defined by s initial points and
p(E)xx = ho(E)gk, for every k >0,

where E : x — X1 is the shift operator, p and o are
polynomials of degree s and ps = 1.
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Plan

Proper integration on finite time
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Proper integration

» An integration method effectively integrates the ODE on a
finite time interval if

lim |[xx — x(tx)|| =0 for any k € [0, tmax/h]
h—0
» Error can be decomposed as

[[xx — x(tk)|| = error in initial points + accumulated local error

— First term controlled by zero-stability
— Second term controlled by consistency
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Zero-stability

» Sensitivity to initial conditions controlled by capacity to
produce bounded solutions in the case g =0

» Reduce to study homogeneous differential equation
p(E)Xk =0

Proposition

A multistep method is zero-stable iff

roots(p(z)) lie in the unit disk

roots(p(z)) in the unit circle have multiplicity one
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Consistency

» Define a measure of local error, called truncation error

T(h) = X(tk-i-s) — Xk+s

5 assuming xx 1 = x(txsi), i € [0,5—1]

» An integration method is said consistent if

li T(h)|| =0.
lim | ()| = 0

Normalization by h because number of errors grows as tmax/h

» Looking at Taylor expansion, this simplifies

Proposition

A multistep method is consistent iff

p1)=0 and  J(1)=0(1)
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Dahlquist theorem

Dahlquist’s theorem

Given a multistep method whose starting values x; — x(t;) for
i € [1,s — 1], zero-stability and consistency are necessary and
sufficient to ensure on a finite time interval [0, tnax] that

Ixk — x(tk)|| — O for any k when h — 0
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Plan

Stability in infinite time
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Infinite time horizon

» Proper integration is traditionally studied on finite time
intervals
» Optimization focuses on infinite time horizon x(c0) = x*
» Needs condition of stability for infinite time horizon
e Here study in case fo linear gradient flows (quadratic
optimization)
e Gives necessary condition to integrate smooth strongly
convex functions
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Absolute stability
» Linear ODE with ul < A < LI reads
x(t) = —Ax(t)

so x(00) =0
» For fixed A, h, a method is absolutely stable if it produces
bounded sequences x;, when applied to the linear ODE

» After diagonalization of A, reduces to study homogeneous
differential equation

(p+ Aho)(E)xxk =0
where X € Sp(A)

Proposition

Region of absolute stability of a multistep method given by p, o is

{hX : roots(p(z) + Aho(z))lie in the unit disk}
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Convergence rates for linear ODE

» By construction, absolute stability gives also rates of
convergence to equilibrium x* for linear ODE given by
wl < A=< LI

» For a multistep method (p, o) and a stepsize h, define

fmax = Max_max{|r| : r € roots(p(z) + Aho(z))}
A€[p,L]

then, if rmax < 1, built sequence x satisfies

HXk - X*H = O(rrl;ax)
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Plan

Integration view for optimization
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Analysis of multi-step methods

» Analyze one and two step explicit methods through their
» consistency

zero-stability

> region of absolute stability

» rate of convergence for linear ODE

v

» Intuition:

The larger h, the faster the algorithm
f(xk) — =~ f(x(tg)) — < efz“kh(f(xo) — 1)
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One-step explicit method

» Euler's explicit scheme
Xk+1 = Xk + hg(xx).

» Zero-stable v/
» Consistent v’

» Optimal step-size for convergence on linear ODE

ho 2
CLtp

and corresponding rate

ka—x*u—0<(1;5ﬁ)k)
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Two steps methods

» Complete analysis gives a family of two step methods
parametrized by one parameter

» Polyak, 1964 heavy ball method and Nesterov, 1983
accelerated method, seen as integration methods, belong to
this class

» Polyak's method is optimal among this class (bigger step size
and better convergence rates)

» But Polyak do not optimize general smooth strongly convex
functions [Lessard et al. 2016]
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Stepsize fo acceleratd method
> Nesterov, 1983 accelerated gradient reads

1
Vit = x = 7 VF(xi),
Xk+1 = Yi+1 + B(Vk+1 — Yk)-

i.e.

—

Bxk— (4B Xr1+Xukv2 = 7 (=B(=VF(x)) + (1 + B)(=VF(xk11)))

L
» Zero-stable v/
» Consistency conditions (p(1) =0, p'(1) = o (1)) give
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Acceleration explanation

v

Gradient descent step size h=1/L

v

Gradient descent approximative rate

FOE™) — F(x) ~ F(x(k/L)) — F(x") < (F(x0) — F(x*))e 2kt

v

Nesterov's stepsize

1 14+ y/u/L 1

~

Poest = TH—5) = avaL  vaiL

Nesterov's approximative rate

v

f(xpeh)—f(x*) ~ f(x(k/\/m»—f(x*) < (f(Xo)—f(X*))e_k w/L

26/29



[[lustration
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Figure: Integration of a linear ODE with optimal (left) and small (right)
step sizes.
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Conclusion

» Accelerated optimization methods can be seen as multistep
integration schemes applied to the basic gradient flow equation

» Natural interpretation of acceleration:
Larger steps speed up convergence

» Further links btw integration methods and other well-known
optimization algorithms:
e proximal gradient descent,
e mirror gradient decent,
e extra-gradient algorithm
[ ]
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Future work

» Analyze smooth and strongly convex case (not only quadratics)

» Extend to weakly convex case
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