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Motivation

I Intuition to build convex optimization algorithms sometimes
mysterious, e.g. accelerated algorithms

I Continuous time interpretation may help
I Here start from basic gradient flow

ẋ(t) = −∇f (x)

I Other interpretations possible through second order derivative
equations [Wibosono et al. 2016] but

I less straightforward
I not proven to be linked to proper integration methods
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Optimization setting

Problem is
minimize f (x)

on variable x where f ∈ C1(Rd) is
I L-smooth, i.e.

‖∇f (x)−∇f (y)‖2 ≤ L‖x − y‖, for every x , y ∈ Rd

I µ-strongly convex, i.e.

〈∇f (x)−∇f (y), x − y〉 ≥ µ‖x − y‖2, for every x , y ∈ Rd
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Continuous time translation

Study of curves x(t) satisfying Ordinary Differential Equation
(ODE)

x(0) = x0

ẋ(t) = g(x(t))

where
I g comes from a potential −f , i.e. g = −∇f (x)
I g is L-Lipschitz, i.e.

‖g(x)− g(y)‖2 ≤ L‖x − y‖, for every x , y ∈ Rd

I −g is µ-strongly monotone, i.e.

−〈g(x)− g(y), x − y〉 ≥ µ‖x − y‖2, for every x , y ∈ Rd
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Properties of the gradient flow

I g Lipschitz ⇒ existence and uniqueness of x(t)
I −g monotone ⇒ uniqueness of equilibrium x∗, s.t.

g(x∗) = 0 and x(∞) = x∗

I Continuous time rates

f (x(t))− f ∗ ≤ (f (x0)− f ∗)e−2µt

‖x(t)− x∗‖ ≤ ‖x0 − x∗‖e−µt
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Goal of integration methods

Generally no analytical form for x(t)...

Goal of integration methods:
I Approximate curve x(t) on a finite time interval [0, tmax ]

I Done on a time grid tk by building sequence xk s.t. xk ≈ x(tk)

I Here regular grid, tk = kh with h, the stepsize

8/29



Euler’s explicit scheme

I Idea: Use Taylor expansion at time t

x(t + h) = x(t) + hẋ(t) + O(h2).

Neglects second order term, you get Euler’s explicit scheme

xk+1 = xk + hg(xk).

I For g(x) = −∇f (x), corresponds to gradient descent
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Euler’s implicit scheme

I Idea: Use Taylor expansion at time t + h

x(t) = x(t + h)− hẋ(t) + O(h2).

Neglects second order term, you get Euler’s implicit scheme

xk+1 = xk + hg(xk+1).

I Requires solution of an implicit problem
→ costly but potentially more precise

I For g(x) = −∇f (x), corresponds to proximal point algorithm

xk+1 = argmin
z

1
2
‖z − xk‖2 + hf (z)
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Multistep schemes

I Idea: Use s previous points to build next one

xk+s = −
s−1∑
i=0

ρixk+i + h
s∑

i=0

σig(xk+i ), for k ≥ 0,

I If σs = 0 the method is explicit otherwise it is implicit
I Compactly defined by s initial points and

ρ(E )xk = hσ(E )gk , for every k ≥ 0,

where E : xk → xk+1 is the shift operator, ρ and σ are
polynomials of degree s and ρs = 1.
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Proper integration

I An integration method effectively integrates the ODE on a
finite time interval if

lim
h→0
‖xk − x(tk)‖ = 0 for any k ∈ J0, tmax/hK

I Error can be decomposed as

‖xk − x(tk)‖ ≈ error in initial points + accumulated local error

→ First term controlled by zero-stability
→ Second term controlled by consistency
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Zero-stability

I Sensitivity to initial conditions controlled by capacity to
produce bounded solutions in the case g = 0

I Reduce to study homogeneous differential equation
ρ(E )xk = 0

Proposition
A multistep method is zero-stable iff

roots(ρ(z)) lie in the unit disk
roots(ρ(z)) in the unit circle have multiplicity one
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Consistency

I Define a measure of local error, called truncation error

T (h) =
x(tk+s)− xk+s

h
assuming xk+i = x(tk+i ), i ∈ J0, s−1K

I An integration method is said consistent if

lim
h→0
‖T (h)‖ = 0.

Normalization by h because number of errors grows as tmax/h

I Looking at Taylor expansion, this simplifies

Proposition
A multistep method is consistent iff

ρ(1) = 0 and ρ′(1) = σ(1)
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Dahlquist theorem

Dahlquist’s theorem
Given a multistep method whose starting values xi → x(ti ) for
i ∈ J1, s − 1K, zero-stability and consistency are necessary and
sufficient to ensure on a finite time interval [0, tmax] that
‖xk − x(tk)‖ → 0 for any k when h→ 0
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Infinite time horizon

I Proper integration is traditionally studied on finite time
intervals

I Optimization focuses on infinite time horizon x(∞) = x∗

I Needs condition of stability for infinite time horizon
• Here study in case fo linear gradient flows (quadratic
optimization)
• Gives necessary condition to integrate smooth strongly
convex functions
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Absolute stability
I Linear ODE with µI � A � LI reads

ẋ(t) = −Ax(t)

so x(∞) = 0
I For fixed A, h, a method is absolutely stable if it produces

bounded sequences xk when applied to the linear ODE
I After diagonalization of A, reduces to study homogeneous

differential equation

(ρ+ λhσ)(E )xk = 0

where λ ∈ Sp(A)

Proposition
Region of absolute stability of a multistep method given by ρ, σ is

{hλ : roots(ρ(z) + λhσ(z))lie in the unit disk}
19/29



Convergence rates for linear ODE

I By construction, absolute stability gives also rates of
convergence to equilibrium x∗ for linear ODE given by
µI � A � LI

I For a multistep method (ρ, σ) and a stepsize h, define

rmax = max
λ∈[µ,L]

max{|r | : r ∈ roots(ρ(z) + λhσ(z))}

then, if rmax < 1, built sequence xk satisfies

‖xk − x∗‖ = O(rkmax)
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Analysis of multi-step methods

I Analyze one and two step explicit methods through their
I consistency
I zero-stability
I region of absolute stability
I rate of convergence for linear ODE

I Intuition:
The larger h, the faster the algorithm

f (xk)− f ∗ ≈ f (x(tk))− f ∗ ≤ e−2µkh(f (x0)− f ∗)
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One-step explicit method

I Euler’s explicit scheme

xk+1 = xk + hg(xk).

I Zero-stable X

I Consistent X
I Optimal step-size for convergence on linear ODE

h =
2

L+ µ

and corresponding rate

‖xk − x∗‖ = O

((
1− µ/L
1+ µ/L

)k
)
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Two steps methods

I Complete analysis gives a family of two step methods
parametrized by one parameter

I Polyak, 1964 heavy ball method and Nesterov, 1983
accelerated method, seen as integration methods, belong to
this class

I Polyak’s method is optimal among this class (bigger step size
and better convergence rates)

I But Polyak do not optimize general smooth strongly convex
functions [Lessard et al. 2016]
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Stepsize fo acceleratd method

I Nesterov, 1983 accelerated gradient reads

yk+1 = xk −
1
L
∇f (xk),

xk+1 = yk+1 + β(yk+1 − yk).

i.e.

βxk−(1+β)xk+1+xk+2 =
1
L
(−β(−∇f (xk)) + (1+ β)(−∇f (xk+1))) .

I Zero-stable X

I Consistency conditions (ρ(1) = 0, ρ′(1) = σ(1)) give

h =
1

L(1− β)
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Acceleration explanation

I Gradient descent step size h = 1/L
I Gradient descent approximative rate

f (xgrad
k )− f (x∗) ≈ f (x(k/L))− f (x∗) ≤ (f (x0)− f (x∗))e−2k µ

L

I Nesterov’s stepsize

hnest =
1

L(1− β)
=

1+
√
µ/L

2
√
µL

≈ 1√
4µL

I Nesterov’s approximative rate

f (xnest
k )−f (x∗) ≈ f (x(k/

√
4µL))−f (x∗) ≤ (f (x0)−f (x∗))e−k

√
µ/L

26/29



Illustration
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Figure: Integration of a linear ODE with optimal (left) and small (right)
step sizes.
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Conclusion

I Accelerated optimization methods can be seen as multistep
integration schemes applied to the basic gradient flow equation

I Natural interpretation of acceleration:

Larger steps speed up convergence

I Further links btw integration methods and other well-known
optimization algorithms:
• proximal gradient descent,
• mirror gradient decent,
• extra-gradient algorithm
• ...
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Future work

I Analyze smooth and strongly convex case (not only quadratics)
I Extend to weakly convex case
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