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A practical problem

I Predict rating of a movie from its review
I Information: histogram of the occurrence of words
I Can be compressed: group synonyms for the task and predict

influence of each group
I Problem: Find best groups for the task
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Theoretical Motivation

I Alternative to sparse optimization
I Sparse: Select variables
I Here: Group variables

I Same idea:
Constrain optimization to get

compressed information for the task
I Other applications:
→ Find group of genomes that explain some phenotype
→ Select band of frequencies of a signal and not isolated
frequencies (Long term goal...)
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Classical regression task

min
w

1
n

n∑
i=1

l(w ; xi , yi )+λ‖w‖22 = L(w)

I X = (x1, . . . , xn)T data points in Rd

I y = (y1, . . . , yn) corresponding labels in R
I w ∈ Rd is the prediction vector
I l is a loss that measures quality of the prediction
I λ‖w‖22 is a regularization term (potentially zero)

The analysis focuses on least squares l(w ; x , y) = 1
2(y −wT x)2 s.t.

L(w) =
1
2n
‖y − Xw‖22+λ‖w‖22
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Modelization of the constraint

I Desired constraint
I Partition d features in (at most) Q groups
I Assign one weight per group

I Tools
I Assignment matrix Z ∈ {0, 1}d×Q s.t.
• Ziq = 1 if variable i is in group q,
• one variable is in exactly one group, i.e. Z1 = 1.

I Vector of weights v ∈ RQ

I Constraint formulation on prediction vector w

w = Zv , Z ∈ {0, 1}d×Q , Z1 = 1, v ∈ RQ
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Problem formulation

min
w ,Z ,v

L(w)

s.t. w = Zv , Z ∈ {0, 1}d×Q , Z1 = 1

I Non-convex: w = Zv and Z ∈ {0, 1}d×Q
I Proposed approaches:

I Convex relaxation of the constraints
I Non-convex projected gradient with statistical analysis
I Convex penalization ?
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Simplification for least squares

I For least square loss, analytical minimization in v possible

min
Z ,v

1
2n
‖y − XZv‖22 + λ‖Zv‖22

=min
Z

1
2n

yT
(
I +

1
nλ

XZ (ZTZ )−1ZTXT
)−1

y

=min
M
φ(M)

where M = Z (ZTZ )−1ZT is the normalized equivalence
matrix of Z

I M encodes the partition

Mij =

1
sq
if both i , j are in group q of size sq

0otherwise
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Convex relaxation strategy

I Setting:
• φ convex in M
• But setM of normalized equivalence matrices not convex
(discrete set)

I Strategy:
• Relax problem by optimizing on the convex hull ofM
• Get a feasible solution Z from relaxation solution
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Conditional gradient idea

I Classical constraint convex optimization use projection steps
→ Potentially costly or not possible
→ While linear minimization on the constraint sometimes easy

I Formal setting
min
x

f (x)

s.t. x ∈ Q

where f and Q convex
I Access to linear minimization oracle

argmin
s∈Q
〈y , s〉 for every y ∈ Q
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Conditional gradient algorithm

I Algorithm

x0 ∈ Q

st = argmin
s∈Q
〈∇f (xt), s〉

xt+1 = xt + αt(st − xt)

where αt ∈ [0, 1] is the stepsize
I Convergence in O(1/t) for f smooth and convex
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Application to convex relaxation

I HereM forms the extreme points of hull(M),
so for a given M ∈M

arg min
N∈hull(M)

〈N,∇φ(M)〉 = arg min
N∈M

〈N,∇φ(M)〉

I Using that ∇φ(M) � 0, this is k-means in one dimension
(solved exactly by dynamic programming)

→ Conditional gradient can be applied !

I Projection on feasible Z is also given by a k-means in one
dimension

I Problem : Computation of ∇φ(M) is very costly...
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Projection on set of constraints

I Projection problem for a given w ∈ Rd

min
Z ,v

‖w − Zv‖22

s.t. Z ∈ {0, 1}d×Q ,Z1 = 1

I A closer look

min
v ,P

Q∑
q=1

∑
i∈Pq

(wi − vq)2

where P = P1, . . .PQ is a partition of d elements in Q groups
I We recognize k-means in one dimension
I Dynamic program solves it exactly in O(d log(d))

computations
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Projected Gradient descent

I Scheme

w0 = 0
wt+1 = PQ(wt − γ∇L(wt))

where PQ is the projection on the set of constraints, i.e.
k-means in one dimension into Q groups.

I Problem non-convex
→ no guarantee of convergence to a global optimum.

I Similar to Iterative Hard Thresholding used in sparse
optimization
→ Potential statistical analysis
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Statistical analyis approach

Assume
I y = Xw∗ + η with η Gaussian noise
I w∗ satisfies constraints
I observations x1, . . . , xn were randomly chosen (subgaussian

vectors)
Show that

I the algorithm converges to w∗
I need less samples than number of features
→ imposed constraint is able to capture the compressed
information
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Statistical analysis results

Proposition
Projected gradient descent (with γ = 1) converges then to w∗ up
to statistical precision if

n = Ω(D) and n = Ω(log(N))

where
I D is the compressed dimension
I N is the complexity of the underlying combinatorial problem

Here D = Q and we assumed Q � d
However N ≥ Qd−Q , so we still need

n = Ω(d)

In comparison for sparse vectors N ≈ dk such that n ≈ k log(d) is
sufficient.
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Convex penalization ?

I Idea: Transform combinatorial problem into a convex penalty
I Define

F : w → Card(G ⊂ J1, dK : ∀i , j ∈ G , w (i) = w (j))

= number of group of identical features of w

I Compute norm associated to F by taking the lower convex
homogeneous envelope of

F (w) +
1
2
‖w‖22

I Problem: Resulting norm is not computable neither is its
proximal operator
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Synthetic experiments setting

I y = Xw∗ + η with η ∼ N (0, σ2)

I w∗ composed of Q = 5 group of identical features among
d = 100

I Goal:
I Test robustness of our method with number of samples n and

level of noise σ
I Measure ‖w∗ − ŵ‖2 with ŵ estimated vector
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Synthetic experiments setting

I Compare our model optimized with
I Convex relaxation (CG)
I Projected gradient on non-convex problem (PG)
I Convex relaxation followed by non-convex refinement (CGPG)

to basic models:
I Least-squares (LS)
I Least-squares followed by a k-means (LSK)
I OSCAR penalty (enforces cluster in some way) (OS)

and oracle given the partition
I Least square solution given the initial clusters of variable

(Oracle)
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Synthetic experiments results for n increasing

n = 50 n = 75 n = 100 n = 125 n = 150
Oracle 0.16±0.06 0.14±0.04 0.10±0.04 0.10±0.04 0.09±0.03
LS 61.94±17.63 51.94±16.01 21.41±9.40 1.02±0.18 0.70±0.09
LSK 62.93±18.05 57.78±17.03 10.18±14.96 0.31±0.19 0.19±0.12
PG 63.31±18.24 52.72±16.51 5.52±14.33 0.14±0.09 0.09±0.04
CG 61.81±17.78 52.59±16.58 17.24±13.87 1.20±1.38 1.05±1.37
CGPG 62.29±18.15 50.15±17.43 0.64±2.03 0.15±0.19 0.17±0.53
OS 61.54±17.59 52.87±15.90 11.32±7.03 1.25±0.28 0.71±0.10

Table: Measure of ‖w∗ − ŵ‖2, the l2 norm of the difference between the
true vector of weights w∗ and the estimated ones ŵ along number of
samples n.
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Synthetic experiments results for σ increasing

σ = 0.05 σ = 0.1 σ = 0.5 σ = 1
Oracle 0.86±0.27 1.72±0.54 8.62±2.70 17.19±5.43
LS 7.04±0.92 14.05±1.82 70.39±9.20 140.41±18.20
LSK 1.44±0.46 2.88±0.91 19.10±12.13 48.09±27.46
PG 0.87±0.27 1.74±0.52 9.11±4.00 26.23±18.00
CG 23.91±36.51 122.31±145.77 105.45±136.79 155.98±177.69
CGPG 1.52±3.13 140.83±710.32 17.34±53.31 24.80±16.32
OS 14.43±2.45 18.89±3.46 71.00±10.12 140.33±18.83

Table: Measure of ‖w∗ − ŵ‖2, the l2 norm of the difference between the
true vector of weights w∗ and the estimated ones ŵ along level of noise
σ.
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Real problem setting

I Predicting ratings of movies from their reviews
I Dataset contains n = 5006 documents and vocabulary of

d = 5623 words

LS LSK PG CG CGPG OS
1.51±0.06 1.53±0.06 1.52±0.06 1.58±0.07 1.49±0.08 1.47±0.07

Table: 100 × mean square errors for predicting movie ratings
associated with reviews.
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Extensions and future directions

I Mix sparsity and clustering:
I Done by modifying dynamic programming of K-means in one

dimension

I Use formulation for other problems:
I Supervised clustering of samples
I Clustered multitask

I Future directions:
I Impose size of clusters to alleviate underlying combinatorial

problem
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Iterative Hard Thesholding (IHT)

I Least square regression with sparsity constraints

min
w

1
2n
‖y − Xw‖22

s.t. ‖w‖0 ≤ k

where ‖w‖0 = Card(i : w (i) =6= 0)
Remark that
‖w‖0 ≤ k ⇔ w = Zv , Z ∈ {0, 1}d×k ZT1 = 1

I Projecting on the constraint set is taking k largest absolute
coordinates

I Corresponding projected gradient descent is IHT
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Statistical analysis sketch

I Constraint set is a union of spaces
UZ = {w : w = Zv , v ∈ RQ} with Z an assignment matrix

I Projected gradient descent is then a point-fix kind of
algorithm, precisely the iterates satisfy

‖wt − w∗‖2 ≤ ρt‖w∗‖2 +
1− ρt

1− ρ
ν‖η‖2

where

ρ = 2max
U∈E
‖I − 1

n
ΠT
UX

TXΠU‖2 and ν =
2
n
max
U∈E
‖XΠU‖2

ΠU is any orthonormal basis of the subspace U
and E = {UZ1 + UZ2 + UZ3 : Zi assignement matrix}

I Study of the largest and smallest singular values of X on
subspaces U ∈ E for X composed of subgausssian vectors

28/28


	Modelization
	Proposed Resolution
	Convex relaxation
	Projected gradient with statistical analysis
	Convex penalization ?

	Empirical Results
	Extensions and future directions

