Learning with Clustered Penalties

Vincent Roulet

PhD Advisor: Alexandre d'Aspremont Collaborators: Francis Bach, Fajwel Fogel Original paper: Learning with Clustered Penalties, ArXiv:1506.04908

Project FACTORY, Toulouse, 05/2017

A practical problem

- Predict rating of a movie from its review
- ▶ Information: histogram of the occurrence of words
- Can be compressed: group synonyms for the task and predict influence of each group
- Problem: Find best groups for the task

Theoretical Motivation

- Alternative to sparse optimization
 - ► Sparse: Select variables
 - ► Here: Group variables
- Same idea:

Constrain optimization to get compressed information for the task

- Other applications:
 - → Find group of genomes that explain some phenotype
 - ightarrow Select band of frequencies of a signal and not isolated frequencies (Long term goal...)

Modelization

Proposed Resolution

Convex relaxation
Projected gradient with statistical analysis
Convex penalization ?

Empirical Results

Extensions and future direction

Classical regression task

$$\min_{w} \quad \frac{1}{n} \sum_{i=1}^{n} I(w; x_i, y_i) + \lambda ||w||_2^2 = L(w)$$

- $X = (x_1, \dots, x_n)^T$ data points in \mathbb{R}^d
- $y = (y_1, \dots, y_n)$ corresponding labels in $\mathbb R$
- $w \in \mathbb{R}^d$ is the prediction vector
- I is a loss that measures quality of the prediction
- $\lambda \|w\|_2^2$ is a regularization term (potentially zero)

The analysis focuses on least squares $I(w; x, y) = \frac{1}{2}(y - w^T x)^2$ s.t.

$$L(w) = \frac{1}{2n} \|y - Xw\|_2^2 + \lambda \|w\|_2^2$$

Modelization of the constraint

- Desired constraint
 - Partition d features in (at most) Q groups
 - Assign one weight per group
- Tools
 - ▶ Assignment matrix $Z \in \{0,1\}^{d \times Q}$ s.t.
 - $Z_{iq} = 1$ if variable *i* is in group *q*,
 - one variable is in exactly one group, i.e. Z1 = 1.
 - ▶ Vector of weights $v \in \mathbb{R}^Q$
- Constraint formulation on prediction vector w

$$w = Zv$$
, $Z \in \{0,1\}^{d \times Q}$, $Z\mathbf{1} = \mathbf{1}$, $v \in \mathbb{R}^Q$

Problem formulation

$$\label{eq:local_equation} \begin{aligned} & \min_{w,Z,v} \quad & L(w) \\ & \text{s.t.} \quad & w = Zv, \quad & Z \in \{0,1\}^{d \times Q}, \quad & Z\mathbf{1} = \mathbf{1} \end{aligned}$$

- ▶ Non-convex: w = Zv and $Z \in \{0, 1\}^{d \times Q}$
- Proposed approaches:
 - Convex relaxation of the constraints
 - Non-convex projected gradient with statistical analysis
 - Convex penalization ?

Modelization

Proposed Resolution

Convex relaxation Projected gradient with statistical analysis Convex penalization ?

Empirical Results

Extensions and future directions

Simplification for least squares

▶ For least square loss, analytical minimization in *v* possible

$$\min_{Z,v} \frac{1}{2n} \|y - XZv\|_2^2 + \lambda \|Zv\|_2^2$$

$$= \min_{Z} \frac{1}{2n} y^T \left(I + \frac{1}{n\lambda} XZ(Z^TZ)^{-1} Z^T X^T\right)^{-1} y$$

$$= \min_{M} \phi(M)$$

where $M = Z(Z^TZ)^{-1}Z^T$ is the normalized equivalence matrix of Z

M encodes the partition

$$M_{ij} = rac{1}{s_q} ext{if both } i,j ext{ are in group } q ext{ of size } s_q ext{ 0otherwise}$$

Convex relaxation strategy

Setting:

- ϕ convex in M
- ullet But set ${\mathcal M}$ of normalized equivalence matrices not convex (discrete set)

Strategy:

- ullet Relax problem by optimizing on the convex hull of ${\mathcal M}$
- Get a feasible solution Z from relaxation solution

Conditional gradient idea

- Classical constraint convex optimization use projection steps
 - → Potentially costly or not possible
 - ightarrow While linear minimization on the constraint sometimes easy
- Formal setting

$$\min_{x} f(x)$$
s.t. $x \in Q$

where f and Q convex

Access to linear minimization oracle

$$\arg\min_{s\in Q}\langle y,s\rangle\quad\text{for every}\quad y\in Q$$

Conditional gradient algorithm

Algorithm

$$x_0 \in Q$$
 $s_t = \arg\min_{s \in Q} \langle \nabla f(x_t), s \rangle$
 $x_{t+1} = x_t + \alpha_t(s_t - x_t)$

where $\alpha_t \in [0, 1]$ is the stepsize

▶ Convergence in O(1/t) for f smooth and convex

Application to convex relaxation

▶ Here \mathcal{M} forms the extreme points of hull(\mathcal{M}), so for a given $M \in \mathcal{M}$

$$\arg\min_{N\in\mathsf{hull}(\mathcal{M})}\langle N,\nabla\phi(M)\rangle =\arg\min_{N\in\mathcal{M}}\langle N,\nabla\phi(M)\rangle$$

- ▶ Using that $\nabla \phi(M) \succeq 0$, this is k-means in one dimension (solved exactly by dynamic programming)
 - → Conditional gradient can be applied!
- ▶ Projection on feasible Z is also given by a k-means in one dimension
- **Problem** : Computation of $\nabla \phi(M)$ is very costly...

Modelization

Proposed Resolution

Convex relaxation

Projected gradient with statistical analysis Convex penalization ?

Empirical Results

Extensions and future directions

Projection on set of constraints

▶ Projection problem for a given $w \in \mathbb{R}^d$

$$\begin{aligned} & \underset{Z,v}{\min} & & \|w-Zv\|_2^2 \\ & \text{s.t.} & & Z \in \{0,1\}^{d \times Q}, Z\mathbf{1} = \mathbf{1} \end{aligned}$$

A closer look

$$\min_{v,\mathcal{P}} \sum_{q=1}^{Q} \sum_{i \in \mathcal{P}_q} (w_i - v_q)^2$$

where $\mathcal{P} = \mathcal{P}_1, \dots \mathcal{P}_Q$ is a partition of d elements in Q groups

- We recognize k-means in one dimension
- Dynamic program solves it exactly in O(d log(d)) computations

Projected Gradient descent

Scheme

$$w_0 = 0$$

$$w_{t+1} = P_Q(wt - \gamma \nabla L(w_t))$$

where P_Q is the projection on the set of constraints, i.e. k-means in one dimension into Q groups.

- Problem non-convex
 - \rightarrow no guarantee of convergence to a global optimum.
- Similar to Iterative Hard Thresholding used in sparse optimization
 - → Potential statistical analysis

Statistical analyis approach

Assume

- $y = Xw_* + \eta$ with η Gaussian noise
- w_{*} satisfies constraints
- by observations x_1, \ldots, x_n were randomly chosen (subgaussian vectors)

Show that

- ▶ the algorithm converges to w_{*}
- need less samples than number of features
 - \rightarrow imposed constraint is able to capture the compressed information

Statistical analysis results

Proposition

Projected gradient descent (with $\gamma=1$) converges then to w_* up to statistical precision if

$$n = \Omega(D)$$
 and $n = \Omega(\log(N))$

where

- D is the compressed dimension
- ► *N* is the complexity of the underlying combinatorial problem

Here D = Q and we assumed $Q \ll d$ However $N > Q^{d-Q}$, so we still need

$$n = \Omega(d)$$

In comparison for sparse vectors $N \approx d^k$ such that $n \approx k \log(d)$ is sufficient.

Modelization

Proposed Resolution

Convex relaxation

Projected gradient with statistical analysis

Convex penalization?

Empirical Results

Extensions and future directions

Convex penalization?

- ▶ Idea: Transform combinatorial problem into a convex penalty
- Define

$$F: w \to \operatorname{Card}(G \subset [1, d]) : \forall i, j \in G, \ w^{(i)} = w^{(j)})$$
= number of group of identical features of w

 Compute norm associated to F by taking the lower convex homogeneous envelope of

$$F(w) + \frac{1}{2} ||w||_2^2$$

▶ **Problem:** Resulting norm is not computable neither is its proximal operator

Modelization

Proposed Resolution

Convex relaxation Projected gradient with statistical analysis Convex penalization ?

Empirical Results

Extensions and future directions

Synthetic experiments setting

- $y = Xw_* + \eta$ with $\eta \sim \mathcal{N}(0, \sigma^2)$
- $lacktriangledown_*$ composed of Q=5 group of identical features among d=100
- ► Goal:
 - ▶ Test robustness of our method with number of samples n and level of noise σ
 - ▶ Measure $||w_* \hat{w}||_2$ with \hat{w} estimated vector

Synthetic experiments setting

- Compare our model optimized with
 - ► Convex relaxation (CG)
 - Projected gradient on non-convex problem (PG)
 - Convex relaxation followed by non-convex refinement (CGPG)

to basic models:

- Least-squares (LS)
- Least-squares followed by a k-means (LSK)
- OSCAR penalty (enforces cluster in some way) (OS)

and oracle given the partition

 Least square solution given the initial clusters of variable (Oracle)

Synthetic experiments results for n increasing

	n = 50	n = 75	n = 100	n = 125	n = 150
Oracle	$0.16{\pm}0.06$	0.14±0.04	0.10±0.04	0.10 ± 0.04	0.09 ± 0.03
LS	61.94±17.63	51.94 ± 16.01	21.41±9.40	1.02 ± 0.18	0.70±0.09
LSK	62.93 ± 18.05	57.78±17.03	10.18 ± 14.96	$0.31{\pm}0.19$	0.19 ± 0.12
PG	63.31±18.24	52.72±16.51	5.52±14.33	0.14 ±0.09	0.09±0.04
CG	61.81±17.78	$52.59{\pm}16.58$	17.24±13.87	1.20±1.38	1.05±1.37
CGPG	$62.29{\pm}18.15$	50.15 ±17.43	0.64±2.03	$0.15{\pm}0.19$	0.17±0.53
OS	61.54 ±17.59	52.87±15.90	11.32±7.03	1.25±0.28	0.71±0.10

Table: Measure of $\|w_* - \hat{w}\|_2$, the l_2 norm of the difference between the true vector of weights w_* and the estimated ones \hat{w} along number of samples n.

Synthetic experiments results for σ increasing

	$\sigma = 0.05$	$\sigma = 0.1$	$\sigma = 0.5$	$\sigma = 1$
Oracle	0.86±0.27	1.72±0.54	8.62±2.70	17.19±5.43
LS	7.04±0.92	14.05±1.82	70.39±9.20	140.41±18.20
LSK	1.44±0.46	$2.88{\pm}0.91$	19.10±12.13	48.09±27.46
PG	0.87±0.27	1.74 ±0.52	9.11 ±4.00	26.23±18.00
CG	23.91±36.51	122.31±145.77	105.45±136.79	155.98±177.69
CGPG	$1.52{\pm}3.13$	140.83±710.32	17.34±53.31	24.80 ±16.32
OS	14.43±2.45	18.89±3.46	71.00±10.12	140.33±18.83

Table: Measure of $||w_* - \hat{w}||_2$, the l_2 norm of the difference between the true vector of weights w_* and the estimated ones \hat{w} along level of noise σ .

Real problem setting

- Predicting ratings of movies from their reviews
- Dataset contains n = 5006 documents and vocabulary of d = 5623 words

LS	LSK	PG	CG	CGPG	OS
1.51 ± 0.06	1.53 ± 0.06	1.52 ± 0.06	1.58 ± 0.07	1.49±0.08	1.47±0.07

Table: $100 \times$ mean square errors for predicting movie ratings associated with reviews.

Modelization

Proposed Resolution

Convex relaxation
Projected gradient with statistical analysis
Convex penalization?

Empirical Results

Extensions and future directions

Extensions and future directions

Mix sparsity and clustering:

 Done by modifying dynamic programming of K-means in one dimension

Use formulation for other problems:

- Supervised clustering of samples
- Clustered multitask

Future directions:

 Impose size of clusters to alleviate underlying combinatorial problem

Iterative Hard Thesholding (IHT)

Least square regression with sparsity constraints

$$\min_{w} \quad \frac{1}{2n} ||y - Xw||_{2}^{2}
\text{s.t.} \quad ||w||_{0} \le k$$

where
$$||w||_0 = \text{Card}(i : w^{(i)} = \neq 0)$$

Remark that $||w||_0 \leq k \iff w = Zv, \quad Z \in \{0,1\}^{d \times k} \quad Z^T \mathbf{1} = \mathbf{1}$

- ▶ Projecting on the constraint set is taking *k* largest absolute coordinates
- Corresponding projected gradient descent is IHT

Statistical analysis sketch

- ▶ Constraint set is a union of spaces $U_Z = \{w : w = Zv, v \in \mathbb{R}^Q\}$ with Z an assignment matrix
- Projected gradient descent is then a point-fix kind of algorithm, precisely the iterates satisfy

$$\|\mathbf{w}_t - \mathbf{w}_*\|_2 \le \rho^t \|\mathbf{w}_*\|_2 + \frac{1 - \rho^t}{1 - \rho} \nu \|\eta\|_2$$

where

$$\rho = 2 \max_{U \in \mathcal{E}} \|I - \frac{1}{n} \Pi_U^T X^T X \Pi_U\|_2 \quad \text{and} \quad \nu = \frac{2}{n} \max_{U \in \mathcal{E}} \|X \Pi_U\|_2$$

 Π_U is any orthonormal basis of the subspace U and $\mathcal{E} = \{U_{Z_1} + U_{Z_2} + U_{Z_3} : Z_i \text{ assignement matrix}\}$

▶ Study of the largest and smallest singular values of X on subspaces $U \in \mathcal{E}$ for X composed of subgausssian vectors