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A practical problem
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» Predict rating of a movie from its review
» Information: histogram of the occurrence of words
» Can be compressed: group synonyms for the task and predict
influence of each group
» Problem: Find best groups for the task
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Theoretical Motivation

» Alternative to sparse optimization
» Sparse: Select variables
» Here: Group variables

» Same idea:

Constrain optimization to get
compressed information for the task
» Other applications:
— Find group of genomes that explain some phenotype

— Select band of frequencies of a signal and not isolated
frequencies (Long term goal...)
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Plan

Modelization
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Classical regression task

n

1
in — > I(w;x,yi 5=1
2w = 1)

v

X = (x1,...,xn)" data points in RY

v

y = (¥1,.-.,Yn) corresponding labels in R
» w € R is the prediction vector

v

I'is a loss that measures quality of the prediction

v

A|lw|[3 is a regularization term (potentially zero)

The analysis focuses on least squares /(w; x,y) = %(y —w'x)?st.

1
L(w) = 5= lly — Xowl3+ A w3
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Modelization of the constraint

» Desired constraint

» Partition d features in (at most) Q groups
» Assign one weight per group
» Tools

» Assignment matrix Z € {0,1}9%9 s.t.

o Zj, =1 if variable i is in group g,

e one variable is in exactly one group, i.e. Z1 =1.
» Vector of weights v € R?

» Constraint formulation on prediction vector w

w=2v, Ze{0,1}9Q Zz1=1, veR®
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Problem formulation

min  L(w)

w,Z,v

st. w=2v, Ze€{0,1}9%9 Z71=1

» Non-convex: w = Zv and Z € {0,1}9%@
» Proposed approaches:

» Convex relaxation of the constraints
» Non-convex projected gradient with statistical analysis
» Convex penalization ?
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Plan

Proposed Resolution
Convex relaxation
Projected gradient with statistical analysis
Convex penalization 7
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Simplification for least squares

» For least square loss, analytical minimization in v possible
1
min —|ly — XZv|[3 + \||Zv|3
in o=l — X213+ Nl 2v[B

1 1 .
=min oy (I + —X2(272)'ZTXT) 7y

Z 2n
=mi M
min (M)
where M = Z(Z7Z)71Z7 is the normalized equivalence
matrix of Z

» M encodes the partition

1, .. . .
—if both i, j are in group q of size s,
IV7U = Sq

Ootherwise
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Convex relaxation strategy

» Setting:
e ¢ convex in M
e But set M of normalized equivalence matrices not convex
(discrete set)

» Strategy:
e Relax problem by optimizing on the convex hull of M
o Get a feasible solution Z from relaxation solution
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Conditional gradient idea

» Classical constraint convex optimization use projection steps
— Potentially costly or not possible
— While linear minimization on the constraint sometimes easy

» Formal setting
min  f(x)

X
st. x€Q
where f and @ convex

» Access to linear minimization oracle

argggig(y,ﬂ for every y € Q
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Conditional gradient algorithm

» Algorithm

X()EQ

S¢ = arg Lnei(g<Vf(Xt)’ s)

Xe41 = X¢ + 0e(S¢ — x¢)

where a; € [0, 1] is the stepsize

» Convergence in O(1/t) for f smooth and convex
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Application to convex relaxation

v

Here M forms the extreme points of hull(M),
so for a given M € M

arg Nem?w)w, Vé(M)) = arg min (N, Vé(M))

v

Using that V¢(M) = 0, this is k-means in one dimension
(solved exactly by dynamic programming)

— Conditional gradient can be applied !

v

Projection on feasible Z is also given by a k-means in one
dimension

v

Problem : Computation of V(M) is very costly...
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Projection on set of constraints

» Projection problem for a given w € R?
min ||w — Zv|)3
Z,yv

st. Ze{0,1}9%9 71 =1

A closer look

v

Q
T;QZ Z(Wi —vg)?

" g=liePq

where P = Py, ... Pq is a partition of d elements in Q groups

v

We recognize k-means in one dimension

» Dynamic program solves it exactly in O(d log(d))
computations
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Projected Gradient descent

» Scheme

wpo = 0
wepr = Po(wt — vV L(we))

where Pg is the projection on the set of constraints, i.e.

k-means in one dimension into @ groups.
» Problem non-convex
— no guarantee of convergence to a global optimum.
» Similar to Iterative Hard Thresholding used in sparse
optimization
— Potential statistical analysis
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Statistical analyis approach

Assume
> y = Xw, + n with n Gaussian noise
> w, satisfies constraints

» observations xi, ..., x, were randomly chosen (subgaussian
vectors)

Show that
» the algorithm converges to w,

» need less samples than number of features

— imposed constraint is able to capture the compressed
information
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Statistical analysis results

Proposition

Projected gradient descent (with v = 1) converges then to w; up
to statistical precision if

n=Q(D) and n=Q(log(N))

where

» D is the compressed dimension

» N is the complexity of the underlying combinatorial problem

v

Here D = @ and we assumed Q < d
However N > Q99 so we still need

n=Q(d)

In comparison for sparse vectors N ~ d* such that n ~ klog(d) is

sufficient.
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Convex penalization 7

v

Idea: Transform combinatorial problem into a convex penalty
Define

v

F:w— Card(GcC[1,d]:Vije G, wl)=wl)

= number of group of identical features of w

v

Compute norm associated to F by taking the lower convex
homogeneous envelope of

1
F(w) + 5wl

v

Problem: Resulting norm is not computable neither is its
proximal operator
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Empirical Results
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Synthetic experiments setting

>

>

y = Xw, +n with n ~ N(0, 0?)

w, composed of @ =5 group of identical features among
d =100

Goal:

» Test robustness of our method with number of samples n and
level of noise o

» Measure ||w, — W||> with W estimated vector
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Synthetic experiments setting

» Compare our model optimized with

» Convex relaxation (CG)
» Projected gradient on non-convex problem (PG)
» Convex relaxation followed by non-convex refinement (CGPG)

to basic models:

» Least-squares (LS)
» Least-squares followed by a k-means (LSK)
» OSCAR penalty (enforces cluster in some way) (OS)

and oracle given the partition

» Least square solution given the initial clusters of variable
(Oracle)
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Synthetic experiments results for n increasing

n =50 n=75 n =100 n=125 n = 150
Oracle 0.16+0.06 0.14+0.04 0.10+0.04 0.10+0.04 | 0.09+0.03
LS 61.94+17.63 | 51.944+16.01 | 21.41+9.40 | 1.02+0.18 | 0.7040.09
LSK 62.93+18.05 | 57.78£17.03 | 10.18+14.96 | 0.31+0.19 | 0.19+£0.12
PG 63.31+18.24 | 52.72+16.51 | 5.52+14.33 | 0.14+0.09 | 0.09+0.04
CG 61.81+17.78 | 52.594+16.58 | 17.244+13.87 | 1.20+1.38 | 1.054+1.37
CGPG | 62.29+18.15 | 50.154+17.43 | 0.64+2.03 | 0.15%0.19 | 0.17£0.53
oS 61.544+17.59 | 52.874+15.90 | 11.32+7.03 | 1.25+0.28 | 0.714+0.10

Table: Measure of ||w, — W||2, the b norm of the difference between the
true vector of weights w, and the estimated ones W along number of
samples n.
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Synthetic experiments results for o increasing

o = 0.05 c=0.1 c =05 o=1
Oracle 0.86+0.27 1.724+0.54 8.62+2.70 17.19+5.43
LS 7.04+0.92 14.05+1.82 70.39+9.20 140.41+18.20
LSK 1.4440.46 2.88+0.91 19.10+12.13 48.09+27.46
PG 0.87+0.27 1.74+0.52 9.11+4.00 26.23+18.00
CG 23.91+36.51 | 122.31+145.77 | 105.45+136.79 | 155.98+177.69
CGPG | 1.52+3.13 | 140.834+710.32 | 17.34453.31 24.80+16.32
oS 14.4342.45 18.89+3.46 71.00+10.12 140.33+18.83

Table: Measure of ||w, — W||2, the kb norm of the difference between the
true vector of weights w, and the estimated ones W along level of noise

ag.
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Real problem setting

» Predicting ratings of movies from their reviews

» Dataset contains n = 5006 documents and vocabulary of
d = 5623 words

LS LSK PG CG CGPG 0S
1.514+0.06 | 1.53£0.06 | 1.52+0.06 | 1.58+0.07 | 1.49+0.08 | 1.47+0.07

Table: 100 x mean square errors for predicting movie ratings
associated with reviews.
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Extensions and future directions
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Extensions and future directions

» Mix sparsity and clustering:

» Done by modifying dynamic programming of K-means in one
dimension
» Use formulation for other problems:
» Supervised clustering of samples
» Clustered multitask
» Future directions:

» Impose size of clusters to alleviate underlying combinatorial
problem
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lterative Hard Thesholding (IHT)

» Least square regression with sparsity constraints

1
in —|ly — Xwl|3
min o |ly = Xwlj2
st |[wllo < k

where |w||o = Card(i : w() == 0)
Remark that
|wlo <k & w=2v, Zec{0,1}9k zT1=1
» Projecting on the constraint set is taking k largest absolute
coordinates

» Corresponding projected gradient descent is IHT
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Statistical analysis sketch

» Constraint set is a union of spaces
Uz ={w:w = Zv,v € R®} with Z an assignment matrix

» Projected gradient descent is then a point-fix kind of
algorithm, precisely the iterates satisfy
P [l
14
1—p iz

lwe = will2 < pf[lwall2 +

where
2 max||/ Ln7xTxn |2 and 2 ma (am
= X - — V= — X
p=cles n Y vii2 n Ues vli2

My is any orthonormal basis of the subspace U
and £ = {Uz, + Uz, + Uz, : Z; assignement matrix}
» Study of the largest and smallest singular values of X on
subspaces U € & for X composed of subgausssian vectors
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