
Complexity Bounds of Iterative Linearization Algorithms
for Discrete-Time Nonlinear Control

Speaker: V. Roulet
Co-authors: S. Srinivasa, M. Fazel, Z. Harchaoui

Soon on ArXiv, paper and code available on request

Send me an email!

INFORMS Optimization Society Conference
03/15/2022



Nonlinear Control Problems

Continuous-Time Control problem
• System driven by dynamics ẋ(t) = f̄ (x(t), u(t))
• Minimize cost h̄(x(t), t) over t ∈ [0,T ] for x(0) fixed

Discrete-Time Control Problem
• Discretize dynamics as xt+1 = f (xt , ut)
• Minimize costs ht(xt) over t ∈ {0, . . . , τ} for x0 fixed

Algorithms Principle
Current controls u0, . . . , uτ−1 with trajectory x0, . . . , xτ
1. Linearize dynamics f around xt , ut
2. Take quadratic approx. of the costs ht around xt
3. Solve resulting LQ pb
4. Repeat from 1.

Control 

State 

Dynamics 

Dynamics of a car

Cost 

Tracking objective
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Autonomous Car Racing

Simple model of a car

x = (zx , zy , θ, v), u = (δ, a)

żx = v cos θ θ̇ = v tan(δ)

ży = v sin θ v̇ = a

Algo. converges fast to optimal trajectory

Optimized trajectory horizon τ = 100
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Autonomous Car Racing

Bicycle model of a car (Liniger et al. 2015)

Models tire forces (highly non-linear)

Unclear whether the algorithm succeeded...

Optimized trajectory horizon τ = 100
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Objectives and Outline

Questions

1. What are sufficient conditions to ensure global convergence?

2. What are the worst-case complexity bounds of these algorithms?

Related work

• Sufficient optimality conditions in continuous-time (Mangasarian 1966)

→ Translatable in discrete-time, requires convexity of implicitly defined functions

• Local convergence of Differential Dynamic Programming

(Polak 2011, Murray & Yakowitz 1984, Liao & Shoemaker 1991)

• Local convergence of generalized Gauss-Newton

e.g. (Yamashita & Fukushima 2001, Diehl & Messerer 2019)

• Global convergence of regularized Gauss-Newton a.k.a. Levenberg-Marquardt

e.g. (Bergou et al. 2020)
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Plan

Nonlinear Control Problems and Algorithms

A Sufficient Condition for Global Convergence

Convergence Analysis of Iterative Linear-Quadratic Approximations
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Discrete-Time Nonlinear Control Problems

Continuous-Time Control problem

min
x(t),u(t)

∫ T

0

h̄(x(t), t)

s.t. ẋ(t) = f̄ (x(t), u(t)), x(0) = x̄0

Discrete-Time Control Problem

min
x0;...;xτ

u0;...;uτ−1

τ∑
t=1

ht(xt)

s.t. xt+1 = f (xt , ut), x0 = x̄0

Discretization schemes:

Euler: f (xt , ut) = xt + ∆f̄ (xt , ut)

Multi-step: f (xt , ut) = xt+1

s.t. xt+(s+1)/k = xs + ∆f̄ (xt+s/k , ut+s/k)

dim(ut)= k dim(u(t))

Euler discretization

2-step discretization
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Nonlinear Control Algorithms for Discrete-Time Control Problems

Forward Given a sequence of controls u0, . . . , uτ−1

a. Compute associated trajectory xt+1 = f (xt , ut)

b. Record linear expansions `xt ,utf of the dynamics f around xt , ut

c. Record quadratic expansions qxtht of the costs around xt

Backward Compute optimal policies πt for the regularized linear-quadratic control problem

min
y0,...,yτ

v0,...,vτ−1

τ∑
t=1

qxtht (yt) +
ν

2

τ−1∑
t=0

‖vt‖2
2

s.t yt+1 = `xt ,utf (yt , vt), y0 = 0

by back-propagating the cost-to-go functions, starting from cτ = qhτ ,

ct(yt) = qht (yt) + min
vt

{ν
2
‖vt‖2

2 + ct+1(`xt ,utf (yt , vt))
}

Roll-out Update the iterates as unext
t = ut + vt

where vt are computed by rolling-out the policies along either

• the linearized dynamics → Iterative Linear Quadratic Regulator (ILQR) (Li & Todorov 2007)

vt = πt(yt) yt+1 = `xt ,utf (yt , vt)

• the original dynamics → Iterative Differential Dynamic Programming (IDDP) (Tassa et al. 2012)

vt = πt(yt) yt+1 = f (xt + yt , ut + vt)− f (xt , ut)
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ILQR Computational Scheme

... ...

 
... ...

... ...

Linear Quadratic 
Back-Propagation
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Objective Decomposition
Control of τ steps of f for u = (u0; . . . ; uτ−1)

f [τ ](x0, u) = (x1; . . . ; xτ )

s.t. xt+1 = f (xt , ut)

Total cost for x = (x1, . . . , xτ ) h(x) =
∑τ

t=1 ht(xt)

Composite objective

J (u) = h(f [τ ](x̄0, u)) =
τ∑

t=1

ht(xt)

s.t. xt+1 = f (xt , ut), x0 = x̄0

... ...

... ...
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Sufficient Condition for Global Convergence

Idea:
• Prove sufficient condition for global conv.

of 1st order methods, such as, for c > 0,

‖∇J (u)‖2
2 ≥ c(J (u)− J ∗)

Gradient dominated objective J Non-convex gradient

dominated function
Derivation:
• Here consider that the total cost h is e.g. µ-strongly convex s.t.

‖∇h(x)‖2
2 ≥ µ(h(x)− h∗)

• We have J (u) = h(f [τ ](x̄0, u)) so ‖∇J (u)‖2
2 = ‖∇u f

[τ ](x̄0, u)∇h(x)‖2
2

• So if f [τ ](x̄0, u) satisfies

∀u σmin(∇u f
[τ ](x̄0, u)) ≥ σ > 0

where σmin(A) = inf‖z‖>0 ‖Az‖2/‖z‖2 is the minimal singular value of A
then

‖∇J (u)‖2
2 ≥ σ2‖∇h(x)‖2

2 ≥ σ2µ(h(x)− h∗) = σ2µ(J (u)− J ∗)
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Interpretation of a Sufficient Condition for Global Convergence

Interpretation

σmin(∇u f
[τ ](x̄0, u)) > 0 ⇐⇒ λ 7→ ∇u f

[τ ](x̄0, u)λ is injective

⇐⇒ v 7→ ∇u f
[τ ](x̄0, u)>v is surjective

Here y = ∇u f
[τ ](x̄0, u)>v is the linearization of the trajectories given as

yt+1 = ∇xt f (xt , ut)
>yt +∇ut f (xt , ut)

>vt , y0 = 0

So σmin(∇u f
[τ ](x̄0, u)) > 0 if the linearization of the trajectories are surjective

How to verify this condition from f only?
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Characterization of a Sufficient Condition for Global Convergence

Lemma

If the linearization, v → ∇uf (x , u)>v , of lf -Lip. cont. dynamics f is surjective,

∀x , u, σmin(∇uf (x , u)) ≥ σf > 0, (Surj)

then the linearization of the trajectories, v → ∇u f
[τ ](x̄0, u)>v , is surjective,

∀u σmin(∇u f
[τ ](x̄0, u)) ≥ σf

1 + lf
> 0,

Take-away: Simply need to check that the dynamic have surj. linearizations

Problem:

• Usually less control variables than state variables dim(u(t)) < dim(x(t))...
So σmin(∇uf (x(t), u(t)) > 0 impossible

→ Use multistep schemes s.t. dim(ut) = k dim(xt)
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Intuition for a Sufficient Condition for Global Convergence

Pendulum dynamics

ml2θ̈(t) = −mlg sin θ(t)− µθ̇(t) + u(t)

One step Euler scheme
f (xt , ut) = xt+1 for xt = (θt , ωt) with ω = θ̇

θt+1 = θt + ∆ωt

ωt+1 = ωt −∆(g/l sin θt − µωt) + ∆ut

Linearization surjective? 7

Two steps Euler scheme f (xt , ut) = xt+1 with ut = (vt , vt+1/2)

θt+1/2 = θt + ∆ωt θt+1 = θt + ...+ ∆2vt

ωt+1/2 = ωt −∆(g/l sin θt − µωt) + ∆vt ωt+1 = ωt + . . .+ ∆vt+1/2

Linearization surjective w.r.t. ut = (vt , vt+1/2) ? 3
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Overall Analysis

Multistep scheme

f (xt , ut) = xt+1

xt+(s+1)/k = xs+∆f̄ (xt+s/k , ut+s/k)

summarized as

f (xt , ut) = φ{k}(xt , ut)

Control in k steps of a dynamic φ
For v = (v0, . . . , vk−1),

φ{k}(y0, v) = yk

s.t. ys+1 = φ(ys , vs)

... ...

... ...

Zooming in the dynamical structure

Sufficient condition for global convergence can be verified by
analyzing whether φ can be linearized by static feedback
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Assumptions
Problem

min
u
{J (u) = h(g(u))} , where g(u) = f [τ ](x̄0, u), h(x) =

τ∑
t=1

ht(xt)

Algorithm

u(k+1) = u(k) + LQRνk (J )(u(k)) (ILQR)

where LQRνk (J )(u(k)) is the oracles returning a direction
computed by dynamic programming with a regularization νk .

Assumptions

• costs ht
I µh-strongly convex → same for total cost h
I Lh-smooth → same for total cost h
I Mh-smooth Hessian → same for total cost h

• dynamic f
I lf -Lip. continuous, Lf smooth → g is lg -Lip.continous, Lg -smooth

lg ≤ lf S , Lg ≤ Lf S(lf S + 1)2 where S =

τ−1∑
t=0

l tf

I σmin(∇uf (x , u)) ≥ σf > 0 → σmin(∇g(u)) ≥ σg = σf /(1 + lf ) > 0
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Convergence Analysis Viewpoint

ILQR as a generalized Gauss-Newton (Sideris & Bobrow 2005)

• Overall ILQR minimizes a quadratic approx. of h on top of a linear approx. of g
• So it can be summarized as

LQRν(J )(u) = arg min
v

q
g(u)
h (`ug (v)) +

ν

2
‖v‖2

2

= −(∇g(u)∇2h(g(u))∇g(u)> + ν I)−1∇g(u)∇h(g(u))

which is a regularized generalized Gauss-Newton method
• The regularization helps to interpolate between Grad Desc and Gauss Newton

Contributions
• Analysis of regularized generalized Gauss-Newton method given
h strongly convex, g with surjective Jacobians ∇g(u)>

• Similar approach as (Nesterov 2007) for modified Gauss-Newton a.k.a. prox-linear
Global conv. of prox-linear under error bound cond. → (Drusvyatskiy & Lewis 2018)
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Convergence Analysis

Global convergence idea
• Select regularization ν to ensure sufficient decrease, i.e.,

for v = LQRν(u), x = g(u), G = ∇g(u), H = ∇2h(x),

J (u + v) ≤ J (u) + qx
h ◦ `ug (v) +

ν

2
‖v‖2

2 (Suff Dec)

= J (u)− 1

2
∇h(x)>G>(GHG> + ν I)−1G∇h(x)

• Given that σmin(G) ≥ σg , we have λmin(G>G) > σ2
g , so

J (u + v)− J (u) ≤ −
σ2
g

l2
gLh + ν

‖∇h(x)‖2
2 ≤ −

σ2
gµh

l2
gLh + ν

(J (u)− J ∗)

→ linear convergence ensured for constant ν satisfying (Suff Dec)

• Condition (Suff Dec) is ensured for ν(u) = c(‖∇h(x)‖2) with c increasing
→ decreasing regularizations can be taken to get better rates
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Convergence Analysis

Local convergence idea
• By standard linear algebra, for x = g(u), G = ∇g(u), H = ∇2h(x),

LQRν(J )(u) = −(GHG> + ν I)−1G∇h(x)

= −G(HG>G + ν I)−1∇h(x) (Push-Forward Identity)

= −G(G>G)−1(H + ν(G>G)−1)−1∇h(x) (G>G invertible)

• So denoting xnext = g(u + v) for v = LQRν(J )(u),

xnext ≈ g(u) +∇g(u)>v = x − (∇2h(x) + ν(∇g(u)>∇g(u))−1)−1∇h(x).

→ Approximate Newton method on the trajectories x for ν � 1

→ Quadratic local convergence can be ensured for decreasing regularizations ν
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Complexity Bound for ILQR

Theorem

Consider strongly convex, smooth, Hessian-smooth costs ht
and Lip. cont., smooth dynamics f with surjective linearizations,
the ILQR algorithm equipped with ν(u) = ν̄‖∇h(g(u))‖2 for ν̄ large enough
converges to accuracy ε in at most

4θg (
√
δ0 −

√
δ)︸ ︷︷ ︸

1st phase

+ 2ρh ln

(
δ0

δ

)
+ 2α ln

(
θg
√
δ0 + ρg

θg
√
δ + ρg

)
︸ ︷︷ ︸

2nd phase

+O(ln ln(ε))︸ ︷︷ ︸
3rd phase

iterations, each having a comput. complexity O(τ(dim(x) + dim(u))3), where

• δ0 = J (u(0))− J ∗ is the initial gap
• δ = 1/(32ρh(θh(1 +

√
ρhρg

3/3) +
√
ρhθg (1 + ρgρh))2) is the gap of quadratic conv.

• ρh = Lh/µh is the cond. nb of the costs
• ρg = lg/σg is the cond. nb of the linearized traj.

• θh = Mh/µ
3/2
h is the param. of self-concordance of the costs

• θg = Lg/(σ2
g
√
µh) acts a self-concordance param. for the linear-quadratic decomp.

• α = 4ρg 2(2ρg 2θh/(3θg ) + ρh) is another cond. nb
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Conclusion

Outcomes
• Identified a simple sufficient condition

for global convergence
• Provided detailed complexity bounds

for ILQR and IDDP

Long-term Objectives
• Identify the impact of

- discretization stepsize ∆
- discretization method

• Inform optimal window size
for Model Predictive Control
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Thank you for your attention!
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Static Feedback Linearization

Definition (Static Feedback Linearization for dim(yt) = d , dim(vt) = 1)

A dynamical system yt+1 = φ(yt , vt) is linearizable by static feedback
if there exists some diffeomorphism a and b(y , ·) s.t.
the reparameterized sytem zt = a(yt), wt = b(yt , vt) is linear of the form

z
(i)
t+1 = z

(i+1)
t for all i ∈ {1, . . . , d − 1}, z

(d)
t+1 = wt ,

Examples
• System driven by its acceleration, with |∂vtψ(yt , vt)| > 0

y
(1)
t+1 = y

(1)
t + ∆y

(2)
t , y

(2)
t+1 = y

(2)
t + ∆ψ(yt , vt)

• System driven by its d th derivative

• More generally, (Aranda-Bricaire et al. 1996) essentially showed that
local feedback linearization ⇐⇒ reachability of any state by φ

Proof is constructive and might be quantified
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Multistep Schemes and Static Feedback Linearization

Idea
• If z

(i)
t+1 = z

(i+1)
t for all i ∈ {1, . . . , d − 1}, z

(d)
t+1 = wt , then

z(1) z(2) z(3) w0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. z(d) . . .

.

.

.

.

.

. z(d) w0

.

.

.

z(d) w0 w1 wd−1

t = 0 t = 1 t = 2 . . . t = d

→ By considering d steps zd = w0:d−1,
→ so the control in d steps of the reparameterized system is the identity
→ so it clearly has surjective linearizations

• This property is kept under the diffeomorphisms a, b

22 / 20



Multistep Schemes and Static Feedback Linearization

Theorem (for dim(yt) = d , dim(vt) = 1)

If the system defined by yt+1 = φ(yt , vt) is linearizable by static feedback with
transformations a and b that are Lipschitz-continuous and such that

∀y σmin(∇a(y)) ≥ σa > 0, inf
y,v
σmin(∇vb(y , v)) ≥ σb > 0,

then the control in k ≥ d steps of the dynamic φ satisfies,

inf
y0,v

σmin(∇vφ
{k}(y0, v)) ≥ σb

la

1

1 + (d − 1)lb/σa
> 0.

Take-away:
• Having access to the exact diffeomorphisms a, b may be intractable
• But showing their existence may be possible

and global convergence guarantees follow
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Extended Analysis for ILQR

Theorem

Given smooth convex costs ht s.t., for some µ > 0 and r ∈ [1/2, 1),

‖∇h(x)‖2 ≥ µr
h(h(x)− h∗)r

and Lip. cont., smooth dynamics f with surjective linearizations,
the ILQR algorithm converges globally with a complexity

O(ε2r−1/(2r − 1) + δ1−r
0 /(1− r)), i.e. O(ln(ε) +

√
δ0) if r = 1/2

Theorem

Given convex, smooth, Hessian-smooth, self-concordant cost h
and Lip. cont., smooth dynamics f with surjective linearizations,
the ILQR algorithm converges locally with a quadratic rate

• Precise rates given in the paper in terms of the cond nb defined before
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Complexity bound for IDDP

Idea
Analyze IDDP as an approximate ILQR similar as (Murray & Yakowitz 1984) for local conv.

Lemma

Given strongly convex, smooth, Hessian-smooth costs ht ,
Lip. cont., smooth dynamics f with surj. linearizations, there exists η > 0 s.t.

∀u, ν ‖DDPν(J )(u)− LQRν(J )(u)‖2 ≤ η‖ LQRν(J )(u)‖2
2

Theorem

Consider strongly convex, smooth, Hessian-smooth costs ht
and Lip. cont., smooth dynamics f with surjective linearizations,
the IDDP algo. equipped with appropriate regularization
converges globally with a local quadratic rate.
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Numerical Illustrations
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