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Optimization in a Differentiable Programming Framework

Differentiable programming framework
• To solve minu F (u), needs oracle as ∇F (u)
1. Record gradients of elementary computations
→ Needs differentiable programming framework
2. Use chain-rule along graph of computations
→ Back-propagate gradients

Today’s problem
• Simple dynamical structure xt+1 = f (xt , ut)
• Canonical example: nonlinear control

Why?
• Algorithms used are not just a gradient descent
• Surprising empirical performance
• May serve as a starting point to extend

differentiable programming methods

Generic graph of computations

... ...

... ...

Graph of computations in nonlinear control
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Nonlinear Control Problems

Continuous Time Control problem
• System driven by dynamics ẋ(t) = f(x(t), u(t))
• Minimize cost h(x(t), t) over t ∈ [0,T ] for x(0) fixed

Discrete Time Control Problem
• Discretize dynamics as xt+1 = f (xt , ut)
• Minimize costs ht(xt) over t ∈ {0, . . . , τ} for x0 fixed

Algorithms Principle
Current controls u0, . . . , uτ−1 with trajectory x0, . . . , xτ
1. Linearize dynamics f around xt , ut
2. Take quadratic approx. of the costs ht around xt
3. Solve resulting lin. quad. problem
4. Repeat from 1.

Control 

State 

Dynamics 

Dynamics of a car

Cost 

Tracking objective
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Autonomous Car Racing

Simple model of a car

x = (zx , zy , θ, v), u = (δ, a)

żx = v cos θ θ̇ = v tan(δ)

ży = v sin θ v̇ = a

Algo. converges fast to optimal trajectory

Optimized trajectory horizon τ = 100
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Autonomous Car Racing

Bicycle model of a car (Liniger et al. 2015)

Models tire forces (highly non-linear)

Unclear whether the algorithm succeeded...

Optimized trajectory horizon τ = 100
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Objectives

Questions

1. What are sufficient conditions to ensure global convergence?

2. How can we understand these algorithms from an optimization viewpoint?

3. What are the worst-case complexity bounds of these algorithms?

Related work

• Sufficient optimality conditions in continuous time (Mangasarian 1966)

→ Translatable in discrete time, requires convexity of implicitly defined functions

• Local convergence of Differential Dynamic Programming or generalized
Gauss-Newton

(Polak 2011, Murray & Yakowitz 1984, Liao & Shoemaker 1991, Yamashita & Fukushima 2001, Diehl &

Messerer 2019)

• (Unregularized) Gauss-Newton, Newton methods for nonlinear control

(Sideris & Bobrow 2005, Dunn & Bertsekas 1989, Wright 1990)
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Outline

Iterative Linear Quadratic Optimization Algorithms for Nonlinear Control

A Sufficient Condition for Global Convergence

Convergence Analysis of ILQR and IDDP
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Discrete Time Control Problems

Continuous Time Control problem

min
x(t),u(t)

∫ T

0

h(x(t), t)dt

s.t. ẋ(t) = f(x(t), u(t)), x(0) = x̄0

Discrete Time Control Problem

min
x0;...;xτ

u0;...;uτ−1

τ∑
t=1

ht(xt)

s.t. xt+1 = f (xt , ut), x0 = x̄0

Discretization schemes: (time-step ∆)

Euler: f (xt , ut) = xt + ∆f(xt , ut)

Multi-step: f (xt , ut) = xt+1

s.t. xt+(s+1)/k = xs + ∆f(xt+s/k , ut+s/k)

dim(ut) = k dim(u(t)) for k steps

Euler discretization

2-step discretization

7 / 23



Nonlinear Control Algorithms for Discrete Time Control Problems

Forward Given a sequence of controls u0, . . . , uτ−1

a. Compute associated trajectory xt+1 = f (xt , ut)
b. Record linear expansions `xt ,utf of the dynamics f around xt , ut

c. Record quadratic expansions qxtht of the costs around xt

Backward Solve the associated regularized linear-quadratic control problem

min
y0,...,yτ

v0,...,vτ−1

τ∑
t=1

qxtht (yt) +
ν

2

τ−1∑
t=0

‖vt‖2
2

s.t yt+1 = `xt ,utf (yt , vt), y0 = 0

by computing recursively the cost-to-go from yt at time t, from cτ = qhτ ,

ct :yt 7→ qxtht (yt)︸ ︷︷ ︸
current cost

+ min
vt

{ν
2
‖vt‖2

2 + ct+1(`xt ,utf (yt , vt))
}

︸ ︷︷ ︸
optimal move at time t
associated policy πt : yt 7→ v∗

t

(
lin. quad. problem
→ closed form sol.

)

Roll-out Update the iterates as unext
t = ut + vt

where vt are computed by rolling-out the policies πt along either
• the linearized dynamics → Iterative Linear Quadratic Regulator (ILQR) (Li & Todorov 2007)

vt = πt(yt) yt+1 = `xt ,utf (yt , vt)

• the original dynamics → Iterative Differential Dynamic Programming (IDDP) (Tassa et al. 2012)

vt = πt(yt) yt+1 = f (xt + yt , ut + vt)− f (xt , ut)
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ILQR Computational Scheme

... ...

 
... ...

... ...

Linear Quadratic 
Back-Propagation
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Objective Decomposition
Control of τ steps of f for u = (u0; . . . ; uτ−1)

f [τ ](x0, u) = (x1; . . . ; xτ )

s.t. xt+1 = f (xt , ut)

Total cost for x = (x1, . . . , xτ ) h(x) =
∑τ

t=1 ht(xt)

Composite objective for x0 = x̄0

J (u) = h(f [τ ](x0, u)) =
τ∑

t=1

ht(xt)

s.t. xt+1 = f (xt , ut)

... ...

... ...
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A Sufficient Condition for Global Convergence

Idea:
• Prove sufficient condition for global conv.

of 1st order methods, such as, for c > 0,

‖∇J (u)‖2
2 ≥ c(J (u)− J ∗)

Gradient dominated objective J Non-convex, gradient

dominated function
Derivation:
• Here consider that the total cost h is e.g. µ-strongly convex s.t.

‖∇h(x)‖2
2 ≥ µ(h(x)− h∗)

• We have J (u) = h(f [τ ](x0, u)) so ‖∇J (u)‖2
2 = ‖∇u f

[τ ](x0, u)∇h(x)‖2
2

• So if f [τ ](x0, u) satisfies

∀u σ(∇u f
[τ ](x0, u)) := inf

λ

‖∇u f
[τ ](x0, u)λ‖2

‖λ‖2
≥ σ > 0

then

‖∇J (u)‖2
2 ≥ σ2‖∇h(x)‖2

2 ≥ σ2µ(h(x)− h∗) = σ2µ(J (u)− J ∗)
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Interpretation of a Sufficient Condition for Global Convergence

Interpretation

σ(∇u f
[τ ](x0, u)) > 0

⇐⇒ Reverse mode of auto-diff λ 7→ ∇u f
[τ ](x0, u)λ is injective

⇐⇒ Forward mode of auto-diff v 7→ ∇u f
[τ ](x0, u)>v is surjective

Here y = ∇u f
[τ ](x0, u)>v is the linearization of the trajectories given as

yt+1 = ∇xt f (xt , ut)
>yt +∇ut f (xt , ut)

>vt , y0 = 0

So σ(∇u f
[τ ](x0, u)) > 0 if the linearization of the trajectories are surjective

How to verify this condition from f only?
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Characterization of a Sufficient Condition for Global Convergence

Lemma (R. et al. (2022))

If the linearization, v → ∇uf (x , u)>v , of lf -Lip. cont. dynamics f is surjective,

∀x , u, σ(∇uf (x , u)) ≥ σf > 0,

then the linearization of the trajectories, v → ∇u f
[τ ](x0, u)>v , is surjective,

∀x0, u, σ(∇u f
[τ ](x0, u)) ≥ σf

1 + lf
> 0,

→ Simply need to check that the dynamic has surj. linearizations

Problem:

• Usually less control variables than state variables dim(u(t)) < dim(x(t))
So σmin(∇uf (x(t), u(t)) > 0 impossible

→ Use multistep schemes s.t. dim(ut) = k dim(u(t))
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Intuition for a Sufficient Condition for Global Convergence

Pendulum dynamics

mθ̈(t) = −mg sin θ(t)− µθ̇(t) + u(t)

One step Euler scheme
f (xt , ut) = xt+1 for xt = (θt , ωt) with ω = θ̇

angle θt+1 = θt + ∆ωt

angle speed ωt+1 = ωt −∆(g sin θt − µωt) + ∆ut

Linearization surjective? 7

Two steps Euler scheme f (xt , ut) = xt+1 with ut = (vt , vt+1/2)

θt+1/2 = θt + ∆ωt θt+1 = θt + ...+ ∆2vt

ωt+1/2 = ωt −∆(g sin θt − µωt) + ∆vt ωt+1 = ωt + . . .+ ∆vt+1/2

Linearization surjective w.r.t. ut = (vt ,vt+1/2) ? 3
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Overall Analysis

Multistep scheme

f (xt , ut)=xt+1

s.t. xt+(s+1)/k=xt+s/k+∆f(xt+s/k , ut+s/k)

:=φ(xt+s/k , ut+s/k)

→ study dynamical struct. of f itself

Control of a dynamic φ in k steps
for v = (v0; . . . ; vk−1),

φ{k}(y0, v) = yk

s.t. ys+1 = φ(ys , vs)

... ...

... ...

Zooming in the dynamical structure

Sufficient condition for global convergence can be verified by
analyzing whether φ can be linearized by static feedback
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Linearization Scheme General Idea

Definition (Simplified see e.g. (Isidori 1995, Sontag 2013))

A dynamical system ys+1 = φ(ys , vs) is linearizable by static feedback
if there exists some diffeomorphisms a and b(y , ·) such that
the reparam. system zs = a(ys), ws = b(ys , vs) is linear, i.e., zs+1 = Azs + Bws

Simple Example
• System driven by its d th derivative (like acceleration in the pendulum example)

y
(i)
t+1 = y

(i)
t + ∆y

(i+1)
t for i ∈ {1, . . . , d − 1}, y

(d)
t+1 = y

(d)
t + ∆ψ(yt , vt)

s.t. |ψ(yt , vt)| 6= 0 for all yt , vt , with ∆ the time step

Theorem (R. et al. (2022) simplified1)

If a d-dimensional system defined by yt+1 = φ(yt , vt) is linearizable by static
feedback then its control in d steps φ{d}(y , v) has surjective linearizations.
Hence a control problem with dynamic f = φ{d} and strongly convex costs h
satisfy a gradient dominating property.

The problem could be solved by gradient descent
But the algorithms are not a gradient descent!

1Quantitative results available
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Setup

Problem

min
u
{J (u) = h(g(u))} , where g(u) = f [τ ](x̄0, u), h(x) =

τ∑
t=1

ht(xt)

Algorithm

u(k+1) = u(k) + LQRνk (J )(u(k)) (ILQR)

where LQRνk (J )(u(k)) is the oracle returning a direction
computed by dynamic programming with a regularization νk

Assumptions
• costs ht : µh-strongly convex, Lh-smooth, Mh-smooth Hessian
→ same for overall cost h

• dynamic f : lf -Lip. continuous, Lf smooth with σ(∇uf (x , u)) ≥ σf > 0
→ mapping g : lg -Lip.continous, Lg -smooth with σ(∇g(u)) ≥ σg > 0

with lg , Lg , σg estimable from lf , Lf , σf
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Convergence Analysis Viewpoint

ILQR as a generalized Gauss-Newton (Sideris & Bobrow 2005)

• Overall ILQR minimizes a quadratic approx. of h on top of a linear approx. of g
• So it can be summarized as

LQRν(J )(u) = arg min
v

q
g(u)
h (`ug (v)) +

ν

2
‖v‖2

2

= −(∇g(u)∇2h(g(u))∇g(u)> + ν I)−1∇g(u)∇h(g(u))

which is a regularized generalized Gauss-Newton method

Convergence proof idea

1. For large enough regularization, LQRν(J )(u) ≈ −ν−1∇g(u)∇h(g(u))
→ linear global convergence possible as for a gradient descent

2. Denoting xnext = g(u + v) for v = LQRν(J )(u), with simple linear algebra,

xnext ≈ g(u) +∇g(u)>v = x − (∇2h(x) + ν(∇g(u)>∇g(u))−1)−1∇h(x).

so for small enough regularization xnext ≈ x −∇2h(x)−1∇h(x)
→ local quadratic convergence possible as for a Newton method

3. Can show that a regularization ν ∝ ‖∇h(x)‖2 ensures both!
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Complexity Bound for ILQR

Theorem (R. et al. (2022)1)

Under the aforementioned assumptions, the ILQR algorithm equipped
with ν(u) = ν̄‖∇h(g(u))‖2 for ν̄ large enough converges to accuracy ε in

4θg (
√
δ0 −

√
δ)︸ ︷︷ ︸

1st phase

+ 2ρh ln

(
δ0

δ

)
+ 2α ln

(
θg
√
δ0 + ρg

θg
√
δ + ρg

)
︸ ︷︷ ︸

2nd phase

+O(ln ln(ε))︸ ︷︷ ︸
3rd phase

iterations, each having a comput. complexity O(τ(dim(x) + dim(u))3), where

• δ0 = J (u(0))− J ∗ is the initial gap
• δ = 1/(32ρh(θh(1 +

√
ρhρg

3/3) +
√
ρhθg (1 + ρgρh))2) is the gap of quadratic conv.

• ρh = Lh/µh is the condition number of the costs
• ρg = lg/σg is the condition number of the linearized traj.

• θh = Mh/µ
3/2
h is the param. of self-concordance of the costs

• θg = Lg/(σ2
g
√
µh) acts as self-concordance param. for the linear-quadratic decomp.

• α = 4ρg 2(2ρg 2θh/(3θg ) + ρh) is another cond. nb

1Extensions to self-concordant costs or gradient dominated costs available
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Complexity Bound for IDDP

Idea
Analyze IDDP as an approximate ILQR similar as (Murray & Yakowitz 1984) for local conv.

Lemma (R. et al. (2022))

Under the aforementioned assumptions, denoting DDPν(J )(u), LQRν(J )(u)
the oracles returned by IDDP and ILQR resp., there exists η > 0 s.t.

∀u, ν ‖DDPν(J )(u)− LQRν(J )(u)‖2 ≤ η‖ LQRν(J )(u)‖2
2

Theorem (R. et al. (2022))

Under the aforementioned assumptions, the IDDP algorithm equipped with
appropriate regularization converges globally with a local quadratic rate.
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Code Example from Toolbox ILQC

i m p o r t t o r c h
from en vs . c a r i m p o r t Car
from en vs . backward i m p o r t l i n q u a d b a c k w a r d , quad backward
from en vs . r o l l o u t i m p o r t r o l l o u t l i n

# D e f i n e c o n t r o l problem and c a n d i d a t e c o n t r o l v a r i a b l e s
env = Car ( model= ’ s i m p l e ’ , d i s c r e t i z a t i o n= ’ e u l e r ’ , c o s t= ’ e x a c t ’ ,
h o r i z o n =50, dt =0.02)
c t r l s = t o r c h . randn ( env . h o r i z o n , env . d i m c t r l , r e q u i r e s g r a d=True )

# ILQR/ Gauss−Newton s t e p
t r a j , c o s t s = env . f o r w a r d ( c t r l s , approx= ’ l i n q u a d ’ )
p o l i c i e s = l i n q u a d b a c k w a r d ( t r a j , c o s t s , r e g c t r l =1.) [ 0 ]
g a u s s n e w t o n d i r = r o l l o u t l i n ( t r a j , p o l i c i e s )
g a u s s n e w t o n s t e p = c t r l s + g a u s s n e w t o n d i r

# IDDP s t e p
i d d p d i r = r o l l o u t e x a c t ( t r a j , p o l i c i e s )
i d d p s t e p = c t r l s + i d d p d i r

# Newton and DDP w i t h quad . approx . a l s o a v a i l a b l e
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Numerical Illustrations
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IDDP exploits differentiable programming but is not a classical GN method
Can we derive similar algorithms that exploit the problem structure?
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Conclusion

Summary
• Conv. guarantees for canonical noncvx pb
→ analyze problem at elementary scale

as done in a diff. prog. implementation

• Complexity bounds for ILQR and IDDP
→ quad. convergence at low iteration cost

by using a diff. prog. implementation

• Generalized back-propagation as in IDDP
→ consider alternate sol. for oracle subpbs,

use similar graph of computations
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Thank you for your attention!
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