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Optimization in a Differentiable Programming Framework

Differentiable programming framework

e To solve min, F(u), needs oracle as VF(u)

1. Record gradients of elementary computations
— Needs differentiable programming framework
2. Use chain-rule along graph of computations
— Back-propagate gradients

Today’s problem
e Simple dynamical structure x¢+1 = f(Xe, Ut)
e Canonical example: nonlinear control

Why?

e Algorithms used are not just a gradient descent

e Surprising empirical performance

e May serve as a starting point to extend
differentiable programming methods
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Graph of computations in nonlinear control
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Nonlinear Control Problems

Dynamics
&(t) = f(z(t), u(t))
Continuous Time Control problem
e System driven by dynamics x(t) = f(x(t), u(t))
e Minimize cost h(x(t), t) over t € [0, T] for x(0) fixed - -
R
&
Discrete Time Control Problem
e Discretize dynamics as x¢+1 = (X, Ut) Dynamics of a car
e Minimize costs h¢(x;) over t € {0,...,7} for xo fixed
Cost

Algorithms Principle Y <2

Current controls wo, ..., u-—1 with trajectory xo, ..., xr
1. Linearize dynamics f around X, u;

2. Take quadratic approx. of the costs h; around x;

3. Solve resulting lin. quad. problem

4. Repeat from 1.

Tracking objective
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Autonomous Car Racing

Simple model of a car

2y

Optimized trajectory horizon 7 = 100

Zx
250
x = (zx,2y,0,v), u=(4,a) 200
Zx = vcosf 6 = vtan() ug 150
zy = vsinf v=a 100
50
0

0 10 2_0 30
Algo. converges fast to optimal trajectory Iterations

Convergence of the algorithm
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Autonomous Car Racing

Bicycle model of a car (Liniger et al. 2015)
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Models tire forces (highly non-linear)

Unclear whether the algorithm succeeded...
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Convergence of the algorithm
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Objectives

Questions
1. What are sufficient conditions to ensure global convergence?
2. How can we understand these algorithms from an optimization viewpoint?

3. What are the worst-case complexity bounds of these algorithms?

Related work
e Sufficient optimality conditions in continuous time (Mangasarian 1966)
— Translatable in discrete time, requires convexity of implicitly defined functions

e Local convergence of Differential Dynamic Programming or generalized
Gauss-Newton

(Polak 2011, Murray & Yakowitz 1984, Liao & Shoemaker 1991, Yamashita & Fukushima 2001, Diehl &
Messerer 2019)

e (Unregularized) Gauss-Newton, Newton methods for nonlinear control
(Sideris & Bobrow 2005, Dunn & Bertsekas 1989, Wright 1990)
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Outline

Iterative Linear Quadratic Optimization Algorithms for Nonlinear Control

A Sufficient Condition for Global Convergence

Convergence Analysis of ILQR and IDDP
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Discrete Time Control Problems

Continuous Time Control problem

min ) /o h(x(t), t)dt

x(t),u(t

st x(t) = f(x(t), u(t)), x(0) = %o

Discrete Time Control Problem

Discretization schemes: (time-step A)
Euler:  f(xe, ue) = xe + Af(xe, ur)
Multi-step:  f(x¢, ut) = Xe41

St Xep(st1)/k = Xs + Af(Xeps/i, Uers/i)
dim(u:) = kdim(u(t)) for k steps

V4
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Euler discretization
4
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2-step discretization
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Nonlinear Control Algorithms for Discrete Time Control Problems

Forward Given a sequence of controls ug, ..., ur—1
a. Compute associated trajectory x¢+1 = f(xt, ut)
b. Record linear expansions /" of the dynamics f around xt, ut
c. Record quadratic expansions qZZ of the costs around x:
Backward Solve the associated regularized linear-quadratic control problem
T y T7—1
H Xt 2
min — 1%
LD SUAORED DI
VOyeeey Ve —1 t=1 t=0
)Xt U
st yey1 =07 (ye,ve), »0=0

by computing recursively the cost-to-go from y; at time t, from ¢ = qy,_,

X, . v Xty U in. .
ceye = qi(ye) + min {Ellth% + cer1 (00" (yes v:))} (lm guad. problem )
—— t

— closed form sol.

current cost . .
u optimal move at time t
associated policy 7 : y; — v,

Roll-out Update the iterates as ul®* = u; + v;
where v; are computed by rolling-out the policies 7; along either
o the linearized dynamics — Iterative Linear Quadratic Regulator (ILQR) (Li & Todorov 2007)

ve = Te(yt)  Yer1 = y;!’ur (yt, vt)
e the original dynamics — lterative Differential Dynamic Programming (IDDP) (Tassa et al. 2012)
ve = me(y)  yer1 = F(xe + ye, ue 4 ve) — F(xe, ue)
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ILQR Computational Scheme

Uy

Vf —> ¥y

Linear Quadratic
; rard Dass [ 'S —_— - LQBP
Forward pass Backward pass Roll-out Back-Propagation
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Outline

Iterative Linear Quadratic Optimization Algorithms for Nonlinear Control

A Sufficient Condition for Global Convergence

Convergence Analysis of ILQR and IDDP
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Objective Decomposition
Control of 7 steps of f for u = (uo;...; ur—1)

(0, u) = (xa; ... 5 x7)

st Xep1 = F(xe, U)

Total cost for x = (x1,...,xr) h(x) =>_7_; he(xt)

Composite objective for xo = X
T(u) = h( 0, u)) =37 hix)
t=1

s.t. Xt4+1 — f(Xh Ut)
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A Sufficient Condition for Global Convergence

Idea:
e Prove sufficient condition for global conv. \\\ ///
of 1% order methods, such as, for ¢ > 0, \ ’
2 \ /
IVI()|l2 > c(T(u) = T7) \/
Non. .
Gradient dominated objective J on-convex, gradient
. . dominated function
Derivation:

e Here consider that the total cost h is e.g. p-strongly convex s.t.
IVA(x)[5 > 11(h(x) — h")

o We have 7 () = h(F")(x0, 1)) 50 V.7 ()][3 = [ Vuf1" (0, ) Vh(x) 3
e So if fI7(xo, u) satisfies

IVuf (0, u)A]l2

>0>0
[ All2

Vu o(Vef(x0,u)) = irj\f

then
VI (@)3 > o°|[Vh(x)[53 > o u(h(x) = h*) = o° (T (u) — T*)
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Interpretation of a Sufficient Condition for Global Convergence

Interpretation

a(Vuf(x0,u)) > 0
<= Reverse mode of auto-diff A — V, ™ (xo, u)A is injective

< Forward mode of auto-diff v — V, " (xo, u) v is surjective
Here y = V., f[Tl(xo, u) T v is the linearization of the trajectories given as
Vir1 = Vi F(Xe, Ut)T)/z + Vi f(xt, ut)TVt, yo=20

So o(Vufl™(x0, u)) > 0 if the linearization of the trajectories are surjective

How to verify this condition from f only?
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Characterization of a Sufficient Condition for Global Convergence

Lemma (R. et al. (2022))
If the linearization, v — V,f(x, u)Tv, of le-Lip. cont. dynamics f is surjective,
Vx,u, o(Vuf(x,u))>or >0,

then the linearization of the trajectories, v — V" (xo, u) v, is surjective,

af

1+

Vxo, U, Q(V,,f[T](xo, u)) > >0,

— Simply need to check that the dynamic has surj. linearizations

Problem:

e Usually less control variables than state variables dim(u(t)) < dim(x(t))
S0 Tmin(Vuf(x(t), u(t)) > 0 impossible

— Use multistep schemes s.t. dim(u;) = kdim(u(t))
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Intuition for a Sufficient Condition for Global Convergence

Pendulum dynamics

mo(t)

—mgsin0(t) — pl(t) + u(t)

One step Euler scheme i
f(Xe, ut) = Xeq1 for xe = (¢, we) with w =0

angle 0p11 = 0; + Awy
angle speed  wii1 = wr — A(gsin b — pw:) + Auy

Linearization surjective? X
Two steps Euler scheme f(x, ur) = xe41 with vy = (ve, vii1,2)

Ori1/2 = Oc + Dw Opi1 = 0; 4 ...+ A?v;
Wey12 = we — A(gsin 0y — pwr) + Avs Wil =wt 4+ ...+ Avepip

Linearization surjective w.r.t. ur = (ve,vii1/2) 7 v
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Overall Analysis

Multistep scheme { ‘

f(Xt, Ut):Xt+1

S.t. Xep(s+1)/k=Xets/ kO (Xeps ks Urts/k)

=P (Xeys /> Urs/k)

— study dynamical struct. of f itself ’;‘ [ " ‘ ‘ / ‘

Control of a dynamic ¢ in k steps

for v = (VO; o Vk—l), .........................................
5 00.v) = ) (-~
s.t. ys+1 — (b(ys’ Vs) ‘ — - — ; ‘

Zooming in the dynamical structure

Sufficient condition for global convergence can be verified by
analyzing whether ¢ can be linearized by static feedback
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Linearization Scheme General Idea
Definition (Slmphfled see e.g. (Isidori 1995, Sontag 2013))

A dynamical system ys11 = ¢(ys, vs) is linearizable by static feedback
if there exists some diffeomorphisms a and b(y, -) such that

the reparam. system z; = a(ys), ws = b(ys, vs) is linear, i.e., zs1 = Azs + Bws

Simple Example
e System driven by its d*" derivative (like acceleration in the pendulum example)

v =y 4 ay P forie {1, d =1}, v =y + Mgy, v)
s.t. [(ye, vi)| # O for all y, v, with A the time step

Theorem (R. et al. (2022) simplified!)

If a d-dimensional system defined by y:11 = ¢(yr, v¢) is linearizable by static
feedback then its control in d steps qﬁ{d}( y, v) has surjective linearizations.
Hence a control problem with dynamic f = o' and strongly convex costs h
satisfy a gradient dominating property.

The problem could be solved by gradient descent
But the algorithms are not a gradient descent!

LQuantitative results available
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Outline

Iterative Linear Quadratic Optimization Algorithms for Nonlinear Control

A Sufficient Condition for Global Convergence

Convergence Analysis of ILQR and IDDP
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Setup

Problem

min {7 (u) = h(g(u))}, where g(u) = F(%0,u), h(x) = he(x)

Algorithm
o = u® 1R, () W™)  (ILQR)

where LQR,, (J)(u®) is the oracle returning a direction
computed by dynamic programming with a regularization v/

Assumptions
e costs h;: pp-strongly convex, Lp-smooth, Mu-smooth Hessian
— same for overall cost h

e dynamic f: /-Lip. continuous, Lf smooth with o(V.f(x,u)) > of >0
— mapping g: lg-Lip.continous, Lg-smooth with o(Vg(u)) > 0z >0
with lg, Lg, o4 estimable from If, L¢, of

17/23



Convergence Analysis Viewpoint

ILQR as a generalized Gauss-Newton (Sideris & Bobrow 2005)
e Overall ILQR minimizes a quadratic approx. of h on top of a linear approx. of g
e So it can be summarized as

LQR, (7)(u) = arg min g (¢;(v)) + 3 Iv][3
= —(Vg(u)V?h(g(u))Ve(u)" + 1) Vg(u)Vh(g(u))
which is a regularized generalized Gauss-Newton method

Convergence proof idea

1. For large enough regularization, LQR,(7)(u) ~ —v~'Vg(u)Vh(g(u))
— linear global convergence possible as for a gradient descent

2. Denoting x"** = g(u + v) for v = LQR,(J)(u), with simple linear algebra,
X"~ g(u) + Vg(u) Tv = x — (Vh(x) + (Ve (u) Ve(u)) ) Vh(x).

so for small enough regularization x"* ~ x — V?h(x) "1V h(x)
— local quadratic convergence possible as for a Newton method

3. Can show that a regularization v o ||V h(x)||2 ensures both!
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Complexity Bound for ILQR

Theorem (R. et al. (2022))

Under the aforementioned assumptions, the ILQR algorithm equipped
with v(u) = ||V h(g(u))||2 for U large enough converges to accuracy € in

40,(vV/d0 — V) +2psIn (ﬁ) + 2aln (m) + O(InlIn(e))
—_— 5 0V + pe ~——
1st phase 3rd phase
2nd phase

iterations, each having a comput. complexity O(r(dim(x) + dim(u))?), where

o 6o = J(u®) — J* s the initial gap

5 =1/(32pp(0n(1+ \/ﬂpg3/3) +/Prbg (1 + pgpPn))?) is the gap of quadratic conv.
® pp, = Lp/pp is the condition number of the costs

® pg = lg/og is the condition number of the linearized traj.

0 = I\/Ih/uz/2 is the param. of self-concordance of the costs

° 0, = Lg/(ag,\/;Th) acts as self-concordance param. for the linear-quadratic decomp.

o o =4p,%(2p420,/(30g) + pp) is another cond. nb

!Extensions to self-concordant costs or gradient dominated costs available
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Complexity Bound for IDDP

Idea
Analyze IDDP as an approximate “_QR similar as (Murray & Yakowitz 1984) for local conv.

Lemma (R. et al. (2022))

Under the aforementioned assumptions, denoting DDP,(7)(u), LQR,(J)(u)
the oracles returned by IDDP and ILQR resp., there exists n > 0 s.t.

Vu,v | DDP,(T)(u) — LQR,(T)(w)]l2 < 0| LQR,(T)(u)]3

Theorem (R. et al. (2022))

Under the aforementioned assumptions, the IDDP algorithm equipped with
appropriate regularization converges globally with a local quadratic rate.
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Code Example from Toolbox ILQC

import torch

from envs.car import Car

from envs.backward import lin_quad_backward, quad_backward
from envs.rollout import roll_out_lin

# Define control problem and candidate control variables

env = Car(model="simple’', discretization="euler’', cost='exact',
horizon=50, dt=0.02)
ctrls = torch.randn(env.horizon, env.dim_ctrl, requires_grad=True)

# ILQR/Gauss—Newton step

traj, costs = env.forward(ctrls, approx='linquad"')
policies = lin_quad_backward(traj, costs, reg_ctrl=1.)[0]
gauss_newton_dir = roll_out_lin(traj, policies)
gauss_newton_step = ctrls + gauss_newton_dir

# IDDP step
iddp_dir = roll_out_exact(traj, policies)
iddp_step = ctrls + iddp-dir

# Newton and DDP with quad. approx. also available
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Numerical Illustrations

Swinging up Pendulum
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IDDP exploits differentiable programming but is not a classical GN method
Can we derive similar algorithms that exploit the problem structure?
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Conclusion

Summary
e Conv. guarantees for canonical noncvx pb
— analyze problem at elementary scale

as done in a diff. prog. implementation

e Complexity bounds for ILQR and IDDP
— quad. convergence at low iteration cost
by using a diff. prog. implementation

e Generalized back-propagation as in IDDP 100
— consider alternate sol. for oracle subpbs,

use similar graph of computations Model Predictive Control
& contouring objective

Thank you for your attention!
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