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Overview

e Nonlinear control is a non-convex problem with dynamical structure
e Yet, nonlinear control algo. may converge fast to optimal solution
— ldentify sufficient conditions for global convergence

— Detail convergence rate
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lterations
Conv. algo. simple car model

Iterative Linear Quadratic Regulator from current g, ..., 1,
1.Compute x4 = f(xp, 1), fort =0,...,7—1

S.T. Lt41 = f(ft; Ut) L=

Record lin. approx. (""" of f on @y, u, quad. approx. g, of h; on x;
2.Define recursively min. cost of lin. quad. approx. from any y; at timet

LQBP : é'xtaut ql“t Criq —> {Ct LY = C];xlf(yt) + minvt Ct+1(€?’ut(yt, Ut))
M f o dpy +

Ty > argming, e (67 (Y, vr)
3.Roll-out optimal controls along the lin. dyn., update with v > 0,

next

vr = TlYe),  Yir1 = g?’ut(yta v), update 1w = uy 4y
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A Global Convergence Condition
AT () = (f7 (o, w))}

Optimization Viewpoint  min

U:(UO;...;UT_l

for u = (uyg, ..., Ur_1)

(DO ) g Z o)
f — ) Objective
(x) = 271;1 ;LtT(fL't) @ @ @

@ - . @

min, J(u) with

J(u) =" (20, )

Idea

e For /1 convex, if we had access to the inverse of fm,

we could reparameterize the problem to get a convex problem!
e The algorithm may only need the possibility to inverse f!”
through its linearized trajectories, namely we investigate whether

Vo, u o(Vaf (w0, w)) = f [|Va /7 (20, A2/ Al > o > 0 (S)
e For h 11 strongly cvx, this ensures that 7 is gradient dominated since
VT (@)3=11Vauf ™ (z0, w) Vi) 3207V i) 3207 1 h(@) — 1) =0 1(T (u) =T

hence a gradient descent could converge globally for example
o ()= A=Vl (zp, ) injective & vV, [ (2o, u) v surjective

Characterization in Terms of Dynamic
If the linearization, v — V, f(x, U)TU, of [4-Lip. cont. dyn. f is surj.

Q(vuf($,u)) > gf > 0
then the linearization of the traj., v — Vq f7(zg, u) v, is surj,
Voo, u, o(Vaf (2o,u) > 0s/(1+1;) >0

— We can focus on f and decompose f according to discretization

Vo, u,
.

Multi-step Discretization
Dyn. fractionated in k steps

f(xt; Ut)zﬂftﬂ
s.t. xt+(s+1)/k:§b(xt+8/k> ut+5/k)

such as ¢(yt7 Ut) = Yt Af(yta Ut)
for f continuous-time dynamic.

To satisfy (.5), suffices that ¢ is
linearizable by static feedback!!
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Example: for x = (z, 2),
Z1 = 2t + Az
Zt+1 — Zt T A¢(Zt7 Zta Ut)

with \8U¢(Zt, Z"t, Ut)‘ 7é 0

Zooming in the dynamical structure

Convergence Analysis

Regularized Iterative Linear Quadratic Control (ILQR)
e Add /||v||5 in computation of ¢;, 7 in ILQR,

e Denote v = LOQR, (J)(w) the output computed in roll-out phase

Generalized Gauss-Newton!’
e [LQR minimizes a quad. approx. of i on top of a lin. approx. of g
for g(u) = f(zo, u), so it can be summarized as

LQR, (7)(w) = arg ming] ™ (£(v)) + 5 o]
= —(Vg(u)V?h(g(w)Vg(u) + 1) 'Vg(u)Vh(g(u))

which is a generalized Gauss-Newton method

Convergence Proof Idea
1. For large enough »/, LQR (J)(u) =~ — " 'Vg(u)Vh(g(u))

— linear global convergence possible as for a gradient descent

2. Let "' = g(u + v), for v = LQR(J)(u),
2" ~g(u)+Vg(u) v=2—(V°h(z)+/(Vg(u) Vg(u))™) Vh(z)

so for small enough 1/, we have "' ~ x — V*h(x) 'V h(x)
— local quadratic convergence possible as for a Newton method

3. Can show that a regularization  oc ||V h(x)||2 ensures both!

Complexity Bound
For g lip. cont., smooth, A strongly cvx, smooth, Hessian-smooth,

if g satisfies Vu,0(Vg(u)) > o, > 0, taking v(u) = ||Vh(g(w))||2
for 7 large enough ILQR converges to accuracy € in

40,(v/ 60 — V8) +2p In (%) + 2aIn (99\/(5_0 il pg) + O(Inln(e))

(99 \/g T Py ~——
1st phase \ / 3rd phase

2nd phase

iterations, each having a comput. complexity O(7(dim(x) + dim(u))?),

where 6y=J (u'")—T* is the initial gap, 8 is the gap of quadratic conv.,
Ph, Pgr Oy, 0, v are condition numbers

Extensions!!!
e Analyzed Differential Dynamic Programming implementation

e Analyzed costs satisfying tojasiewicz inequality or self-concordance
Code at https://github.com/vroulet/ilgc, EXperiments in 2]
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