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• Nonlinear control is a non-convex problem with dynamical structure
• Yet, nonlinear control algo. may converge fast to optimal solution
→ Identify sufficient conditions for global convergence
→ Detail convergence rate

Overview

Continuous Time
Trajectory x(t) controlled by u(t)

via dynamics f to optimize cost h

min
x(t),u(t)

∫ T

0

h(x(t), t)dt

s.t. ẋ(t) = f(x(t), u(t)), x(0)=x̄0

Discrete Time
Discretize dynamics and costs to get

min
x0,...,xτ
u0,...,uτ−1

τ∑
t=1

ht(xt)

s.t. xt+1 = f (xt, ut) x0=x̄0
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Conv. algo. simple car model
Iterative Linear Quadratic Regulator from current u0, . . . , uτ−1

1.Compute xt+1 = f (xt, ut), for t = 0, . . . , τ − 1

Record lin. approx. `xt,utf of f on xt, ut, quad. approx. qxtht of ht on xt
2.Define recursively min. cost of lin. quad. approx. from any yt at timet

LQBP : `xt,utf , qxtht, ct+1→
{
ct : yt 7→ qxtht(yt) + minvt ct+1(`

xt,ut
f (yt, vt))

πt : yt 7→ arg minvt ct+1(`
xt,ut
f (yt, vt))

3.Roll-out optimal controls along the lin. dyn., update with γ > 0,
vt = πt(yt), yt+1 = `xt,utf (yt, vt), update unext

t = ut + γvt

... ...
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LQBP LQBP...LQBP...

Nonlinear Control

Optimization Viewpoint min
u=(u0;...;uτ−1)

{J (u) = h(f [τ ](x0,u))}

... ...

... ... (
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Idea
• For h convex, if we had access to the inverse of f [τ ],

we could reparameterize the problem to get a convex problem!
• The algorithm may only need the possibility to inverse f [τ ]

through its linearized trajectories, namely we investigate whether
∀x0,u σ(∇uf [τ ](x0,u)) := inf

λ
‖∇uf [τ ](x0,u)λ‖2/‖λ‖2 ≥ σ > 0 (S)

• For h µ strongly cvx, this ensures that J is gradient dominated since
‖∇J (u)‖2

2=‖∇uf [τ ](x0,u)∇h(x)‖2
2≥σ2‖∇h(x)‖2

2≥σ2µ(h(x)−h∗)=σ2µ(J (u)−J ∗)
hence a gradient descent could converge globally for example
• (S)⇔λ 7→∇uf [τ ](x0,u)λ injective⇔ v 7→∇uf [τ ](x0,u)>v surjective

Characterization in Terms of Dynamic
If the linearization, v 7→ ∇uf (x, u)>v, of lf-Lip. cont. dyn. f is surj.

∀x, u, σ(∇uf (x, u)) ≥ σf > 0

then the linearization of the traj., v 7→ ∇uf [τ ](x0,u)>v, is surj,
∀x0,u, σ(∇uf [τ ](x0,u)) ≥ σf/(1 + lf) > 0

→ We can focus on f and decompose f according to discretization

Multi-step Discretization
Dyn. fractionated in k steps

f (xt, ut)=xt+1

s.t. xt+(s+1)/k=φ(xt+s/k, ut+s/k)

such as φ(yt, vt) = yt + ∆f(yt, vt)

for f continuous-time dynamic.

To satisfy (S), suffices that φ is
linearizable by static feedback[1]

Example: for x = (z, ż),
zt+1 = zt + ∆żt
żt+1 = żt + ∆ψ(zt, żt, vt)

with |∂vψ(zt, żt, vt)| 6= 0

... ...

... ...

Zooming in the dynamical structure

A Global Convergence Condition
Regularized Iterative Linear Quadratic Control (ILQR)
• Add ν‖vt‖2

2 in computation of ct, πt in ILQR,
• Denote v = LQRν(J )(u) the output computed in roll-out phase

Generalized Gauss-Newton[3]

• ILQR minimizes a quad. approx. of h on top of a lin. approx. of g
for g(u) = f [τ ](x0,u), so it can be summarized as

LQRν(J )(u) = arg min
v

q
g(u)
h (`ug (v)) +

ν

2
‖v‖2

2

= −(∇g(u)∇2h(g(u))∇g(u)> + ν I)−1∇g(u)∇h(g(u))

which is a regularized generalized Gauss-Newton method
Convergence Proof Idea
1. For large enough ν, LQRν(J )(u) ≈ −ν−1∇g(u)∇h(g(u))

→ linear global convergence possible as for a gradient descent
2. Let xnext = g(u + v), for v = LQRν(J )(u),

xnext≈g(u)+∇g(u)>v=x−(∇2h(x)+ν(∇g(u)>∇g(u))−1)−1∇h(x)

so for small enough ν, we have xnext ≈ x−∇2h(x)−1∇h(x)

→ local quadratic convergence possible as for a Newton method
3. Can show that a regularization ν ∝ ‖∇h(x)‖2 ensures both!

Complexity Bound
For g lip. cont., smooth, h strongly cvx, smooth, Hessian-smooth,
if g satisfies ∀u, σ(∇g(u)) ≥ σg > 0, taking ν(u) = ν̄‖∇h(g(u))‖2

for ν̄ large enough ILQR converges to accuracy ε in

4θg(
√
δ0 −
√
δ)︸ ︷︷ ︸

1st phase

+ 2ρh ln

(
δ0

δ

)
+ 2α ln

(
θg
√
δ0 + ρg

θg
√
δ + ρg

)
︸ ︷︷ ︸

2nd phase

+O(ln ln(ε))︸ ︷︷ ︸
3rd phase

iterations, each having a comput. complexity O(τ (dim(x) + dim(u))3),
where δ0=J (u(0))−J ∗ is the initial gap, δ is the gap of quadratic conv.,
ρh, ρg, θh, θg α are condition numbers
Extensions[1]

• Analyzed Differential Dynamic Programming implementation
• Analyzed costs satisfying  Lojasiewicz inequality or self-concordance
Code at https://github.com/vroulet/ilqc, Experiments in [2]

Convergence Analysis
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