UNIVERSITY of WASHINGTON

Complexity Bounds of Iterative Linear Quadratic Optimization Algorithms for Discrete Time Nonlinear Control

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel, Zaid Harchaoui University of Washington

A Global Convergence Condition

Idea

- For h convex, *if we had access* to the inverse of $f^{[\tau]}$, we could reparameterize the problem to get a *convex problem*!
- The algorithm may only need the *possibility* to inverse $f^{[\tau]}$ through its linearized trajectories, namely we investigate whether

 $\forall x_0, \boldsymbol{u} \ \underline{\sigma}(\nabla_{\boldsymbol{u}} \boldsymbol{f}^{[\tau]}(x_0, \boldsymbol{u})) := \inf_{\boldsymbol{\lambda}} \|\nabla_{\boldsymbol{u}} \boldsymbol{f}^{[\tau]}(x_0, \boldsymbol{u})\boldsymbol{\lambda}\|_2 / \|\boldsymbol{\lambda}\|_2 \ge \boldsymbol{\sigma} > 0 \quad (S)$ • For $h \mu$ strongly cvx, this ensures that \mathcal{J} is gradient dominated since

- $\|\nabla \mathcal{J}(\boldsymbol{u})\|_{2}^{2} = \|\nabla_{\boldsymbol{u}} \boldsymbol{f}^{[\tau]}(x_{0}, \boldsymbol{u}) \nabla \boldsymbol{h}(\boldsymbol{x})\|_{2}^{2} \ge \boldsymbol{\sigma}^{2} \|\nabla \boldsymbol{h}(\boldsymbol{x})\|_{2}^{2} \ge \boldsymbol{\sigma}^{2} \boldsymbol{\mu}(\boldsymbol{h}(\boldsymbol{x}) \boldsymbol{h}^{*}) = \boldsymbol{\sigma}^{2} \boldsymbol{\mu}(\mathcal{J}(\boldsymbol{u}) \mathcal{J}^{*})$
- hence a gradient descent could converge globally for example
- $(S) \Leftrightarrow \boldsymbol{\lambda} \mapsto \nabla_{\boldsymbol{u}} f^{[\tau]}(x_0, \boldsymbol{u}) \boldsymbol{\lambda}$ injective $\Leftrightarrow \boldsymbol{v} \mapsto \nabla_{\boldsymbol{u}} f^{[\tau]}(x_0, \boldsymbol{u})^\top \boldsymbol{v}$ surjective

Characterization in Terms of Dynamic

- If the linearization, $v \mapsto \nabla_u f(x, u)^\top v$, of l_f -Lip. cont. dyn. f is surj. $\forall x, u, \quad \underline{\sigma}(\nabla_u f(x, u)) \ge \sigma_f > 0$
- then the linearization of the traj., $m{v}\mapsto
 abla_{m{u}}f^{[au]}(x_0,m{u})^{ op}m{v}$, is surj, $\forall x_0, \boldsymbol{u}, \quad \underline{\sigma}(\nabla_{\boldsymbol{u}} f^{[\tau]}(x_0, \boldsymbol{u})) \ge \sigma_f / (1 + l_f) > 0$
- \rightarrow We can focus on f and decompose f according to discretization

Multi-step Discretization

Dyn. fractionated in k steps

 $f(x_t, u_t) = x_{t+1}$ s.t. $x_{t+(s+1)/k} = \phi(x_{t+s/k}, u_{t+s/k})$ such as $\phi(y_t, v_t) = y_t + \Delta f(y_t, v_t)$ for f continuous-time dynamic.

To satisfy (S), suffices that ϕ is linearizable by static feedback^[1]

Example: for $x = (z, \dot{z})$, $z_{t+1} = z_t + \Delta \dot{z}_t$ $\dot{z}_{t+1} = \dot{z}_t + \Delta \psi(z_t, \dot{z}_t, v_t)$ with $|\partial_v \psi(z_t, \dot{z}_t, v_t)| \neq 0$

Zooming in the dynamical structure

Dynamics $\text{for} \ \mathbf{u} = (u_0, \dots, u_{\tau-1})$ $[x_0,\mathbf{u})=(x_1,\ldots,x_ au)$ $x_{t+1} = f(x_t, u_t)$

Objective $\min_{\mathbf{u}} \mathcal{J}(\mathbf{u}) \, \, \mathrm{with}$ $\mathcal{J}(\mathbf{u}) = rac{h}{h}(f^{[au]}(x_0,\mathbf{u}))$.

Convergence Analysis

Regularized Iterative Linear Quadratic Control (ILQR)

- Add $\boldsymbol{\nu} \| v_t \|_2^2$ in computation of c_t , π_t in ILQR,

Generalized Gauss-Newton^[3]

for $g(\boldsymbol{u}) = f^{[\tau]}(x_0, \boldsymbol{u})$, so it can be summarized as

 $LQR_{\boldsymbol{\nu}}(\mathcal{J})(\boldsymbol{u}) = \arg\min q_h^{g(\boldsymbol{u})}$ $= -(\nabla g(\boldsymbol{u})\nabla^2)$

which is a *regularized* generalized Gauss-Newton method

Convergence Proof Idea

- 1. For large enough ν , $LQR_{\nu}(\mathcal{J})(\boldsymbol{u}) \approx -\nu^{-1}\nabla g(\boldsymbol{u})\nabla h(g(\boldsymbol{u}))$
- \rightarrow linear global convergence possible as for a gradient descent 2. Let $\boldsymbol{x}^{\text{next}} = g(\boldsymbol{u} + \boldsymbol{v})$, for $\boldsymbol{v} = \text{LQR}_{\boldsymbol{\nu}}(\mathcal{J})(\boldsymbol{u})$,

 $\boldsymbol{x}^{\text{next}} \approx g(\boldsymbol{u}) + \nabla g(\boldsymbol{u})^{\top} \boldsymbol{v} = \boldsymbol{x} - \boldsymbol{v}$

Complexity Bound

For g lip. cont., smooth, h strongly cvx, smooth, Hessian-smooth, if g satisfies $\forall \boldsymbol{u}, \underline{\sigma}(\nabla g(\boldsymbol{u})) \geq \sigma_g > 0$, taking $\boldsymbol{\nu}(\boldsymbol{u}) = \overline{\boldsymbol{\nu}} \| \nabla h(g(\boldsymbol{u})) \|_2$ for $\overline{\nu}$ large enough ILQR converges to accuracy ε in

iterations, each having a comput. complexity $O(\tau (\dim(x) + \dim(u))^3)$, where $\delta_0 = \mathcal{J}(\boldsymbol{u}^{(0)}) - \mathcal{J}^*$ is the initial gap, $\boldsymbol{\delta}$ is the gap of quadratic conv., ho_h , ho_g , $heta_h$, $heta_g \; lpha$ are condition numbers **Extensions**^[1]

Reference

Algorithms for Discrete Time Nonlinear Control. arXiv preprint Differentiable Programming Algorithmic Templates. arXiv preprint problems. American Control Conference.

• Denote $\boldsymbol{v} = LQR_{\boldsymbol{\nu}}(\mathcal{J})(\boldsymbol{u})$ the output computed in roll-out phase

• ILQR minimizes a quad. approx. of h on top of a lin. approx. of g

$$\mathcal{D}(\ell_g^{\boldsymbol{u}}(\boldsymbol{v})) + \frac{\boldsymbol{\nu}}{2} \|\boldsymbol{v}\|_2^2$$

 $\mathcal{D}^2h(g(\boldsymbol{u}))\nabla g(\boldsymbol{u})^\top + \boldsymbol{\nu} \mathrm{I})^{-1}\nabla g(\boldsymbol{u})\nabla h(g(\boldsymbol{u}))$

$$(\nabla^2 h(\boldsymbol{x}) + \boldsymbol{\nu} (\nabla g(\boldsymbol{u})^\top \nabla g(\boldsymbol{u}))^{-1})^{-1} \nabla h(\boldsymbol{x})$$

so for small enough $m{
u}$, we have $m{x}^{ ext{next}} pprox m{x} -
abla^2 h(m{x})^{-1}
abla h(m{x})$ \rightarrow local quadratic convergence possible as for a Newton method 3. Can show that a regularization $\boldsymbol{\nu} \propto \|\nabla h(\boldsymbol{x})\|_2$ ensures both!

$$\left(\frac{\theta_g\sqrt{\delta_0}+\rho_g}{\theta_g\sqrt{\delta}+\rho_g}\right)+O(\ln\ln(\varepsilon))$$

 $\frac{\partial}{\partial g}\sqrt{\delta}+\rho_g$

 Analyzed Differential Dynamic Programming implementation • Analyzed costs satisfying Łojasiewicz inequality or self-concordance Code at https://github.com/vroulet/ilqc, Experiments in [2]

^[1] Roulet, V., Srinivasa, S., Fazel, M., Harchaoui, Z. (2022). Complexity Bounds of Iterative Linear Quadratic Optimization

^[2] Roulet, V., Srinivasa, S., Fazel, M., Harchaoui, Z. (2022). Iterative Linear Quadratic Optimization for Nonlinear Control:

^[3] Sideris, A., Bobrow, J. (2005). A fast sequential linear quadratic algorithm for solving unconstrained nonlinear optimal control