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Nonlinear Control Problems
Continuous Time
Trajectory x(t) controlled by u(t)
via dynamics f to optimize cost h

min
x(t),u(t)

∫ T

0

h(x(t), t)dt

s.t. ẋ(t) = f(x(t), u(t)), x(0)=x̄0

Discrete Time
Discretize dynamics and costs with e.g. Euler scheme
Optimize over controls u0, . . . , uτ−1

min
x0,...,xτ

u0,...,uτ−1

τ∑
t=1

ht(x t)

s.t. x t+1 = f (x t , ut), x0=x̄0

Algorithms Principle (Jacobson & Mayne 1970, Li & Todorov 2007)

Current controls u0, . . . , uτ−1 with trajectory x0, . . . , xτ
1. Linearize dynamics f around x t , ut

2. Take quadratic approx. of the costs ht around x t

3. Solve resulting lin. quad. problem
4. Repeat from 1.

Control 

State 

Dynamics 

Dynamics of a car

Cost 

Tracking objective
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Autonomous Car Racing

Simple model of a car

x = (zx , zy , θ, v), u = (δ, a)

żx = v cos θ θ̇ = v tan(δ)

ży = v sin θ v̇ = a

Algo. converges fast to optimal trajectory

Optimized trajectory horizon τ = 100
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Autonomous Car Racing

Bicycle model of a car (Liniger et al. 2015)

Models tire forces (highly non-linear)

Unclear whether the algorithm succeeded...

Optimized trajectory horizon τ = 100
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Outline

A Sufficient Condition for Global Convergence

Implementation and Convergence Analysis
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Optimization Viewpoint

Compositional Problem for u = (u0, . . . , uτ−1), with x0 = x̄0

min
u
J (u) = h(f [τ ](x0, u))

• f [τ ] take sequence of controls outputs sequence of states
• h total cost on the states

... ...

... ... (

Dynamics

Costs
Objective
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A Sufficient Condition for Global Convergence

Idea
• Prove sufficient condition for global conv.

of 1st order methods, such as, for c > 0,

‖∇J (u)‖2
2 ≥ c(J (u)− J ∗)

Gradient dominating objective J
Non-convex, gradient

dominating function
Derivation
• Consider the total cost h to be µ-strongly cvx s.t. ‖∇h(x)‖2

2 ≥ µ(h(x)− h∗)

• We have J (u) = h(f [τ ](x0, u)) so ‖∇J (u)‖2
2 = ‖∇u f

[τ ](x0, u)∇h(x)‖2
2

where ∇u f
[τ ](x0, u) ∈ Rdim(u)×dim(x) (transpose Jacobian)

• So if f [τ ](x0, u) satisfies

∀u σ(∇u f
[τ ](x0, u)) := inf

λ

‖∇u f
[τ ](x0, u)λ‖2

‖λ‖2
≥ σ > 0

where σ(A) is the minimal singular value of A, then

‖∇J (u)‖2
2 ≥ σ2‖∇h(x)‖2

2 ≥ σ2µ(h(x)− h∗) = σ2µ(J (u)− J ∗) X
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Interpretation of a Sufficient Condition for Global Convergence

Interpretation

σ(∇u f
[τ ](x0, u)) > 0

⇐⇒ Reverse mode of auto-diff λ 7→ ∇u f
[τ ](x0, u)λ is injective

⇐⇒ Forward mode of auto-diff v 7→ ∇u f
[τ ](x0, u)>v is surjective

Here y = ∇u f
[τ ](x0, u)>v is the linearization of the trajectories given as

yt+1 = ∇xt f (xt , ut)
>yt +∇ut f (xt , ut)

>vt , y0 = 0

So σ(∇u f
[τ ](x0, u)) > 0 if the linearization of the trajectories are surjective

How to verify this condition from f only?

Previous work
Sufficient optimality conditions in continuous time done by Mangasarian (1966)

→ Translatable in discrete time but requires convexity of implicitly defined functions...

7 / 17



Characterization of a Sufficient Condition for Global Convergence

Lemma (R. et al. (2022))

If the linearization, v → ∇uf (x , u)>v , of lf -Lip. cont. dynamics f is surjective,

∀x , u, σ(∇uf (x , u)) ≥ σf > 0,

then the linearization of the trajectories, v → ∇u f
[τ ](x0, u)>v , is surjective,

∀x0, u, σ(∇u f
[τ ](x0, u)) ≥ σf

1 + lf
> 0,

Problem:

• Usually less control variables than state variables dim(u(t)) < dim(x(t))
So σ(∇uf (x(t), u(t))) > 0 impossible when looking in the continuous time

→ But we can use multistep discretization schemes
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Intuition for a Sufficient Condition for Global Convergence

Pendulum dynamics

mθ̈(t) = −mg sin θ(t)− µθ̇(t) + u(t)

One step Euler scheme
f (xt , ut) = xt+1 for xt = (θt , ωt) with ω = θ̇

angle θt+1 = θt + ∆ωt

angle speed ωt+1 = ωt −∆(g sin θt − µωt) + ∆ut

Linearization surjective? 7

Two steps Euler scheme f (xt , ut) = xt+1 with ut = (vt , vt+1/2)

θt+1/2 = θt + ∆ωt θt+1 = θt + ...+ ∆2vt

ωt+1/2 = ωt −∆(g sin θt − µωt) + ∆vt ωt+1 = ωt + . . .+ ∆vt+1/2

Linearization surjective w.r.t. ut = (vt ,vt+1/2) ? 3
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Overall Analysis

Trajectory decomposed in τ steps

f [τ ](x0, u) = (x1; . . . ; xτ )

s.t. xt+1 = f (xt , ut)

Dynamic fractionated in k steps

f (xt , ut)=xt+1

s.t. xt+(s+1)/k=φ(xt+s/k , ut+s/k)

such as φ(yt , vt) = yt + ∆f(yt , vt)

for f continuous-time dynamic.

... ...

... ...

Zooming in the dynamical structure

Sufficient condition for global convergence can be verified by
analyzing whether φ can be linearized by static feedback, see R. et al. (2022)
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Outline

A Sufficient Condition for Global Convergence

Implementation and Convergence Analysis
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Implementation

Gradient oracle
• Linear approx. of dynamics, costs,
• Gradients of objective computed through dynamics

... ......

Forward pass 
Compute objective and linear approx.
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Implementation

Gradient oracle
• Linear approx. of dynamics, costs,
• Gradients of objective computed through dynamics

... ......

......

Backward pass 
Backpropagate gradients through Matrix Vector Products (MVP) 

Output gradients of objective w.r.t. control variables 

MVPMVPMVP
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Implementation

Linear Quadratic Regulator oracle
• Linear approx. of dynamics, quadratic approx. of costs
• Regularized linear quadratic approx. of objective minimized through dynamics

... ...

Forward pass 
Compute objective, linear approx. of dynamics, quad. approx. of costs
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Implementation

Linear Quadratic Regulator oracle
• Linear approx. of dynamics, quadratic approx. of costs
• Regularized linear quadratic approx. of objective minimized through dynamics

... ...

MIMP MIMP...MIMP...

 quad. approx of  on             lin. approx of  on 
 

where  is a quad. function param. by Matrices Inverse & Matrices Products (MIMP)

Backward pass 
Define recursively minimum cost of reg. lin. quad. approx. starting from any  at time   
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Implementation
Linear Quadratic Regulator oracle
• Linear approx. of dynamics, quadratic approx. of costs
• Regularized linear quadratic approx. of objective minimized through dynamics

... ...

MIMP MIMP...MIMP...

Backward pass 
Record optimal control of reg. lin. quad. approx. starting from any  at time t 
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Implementation
Linear Quadratic Regulator oracle
• Linear approx. of dynamics, quadratic approx. of costs
• Regularized linear quadratic approx. of objective minimized through dynamics

... ...

 
... ...

MIMP MIMP...MIMP...

Roll-out pass 
Roll-out optimal controls along the linear dynamics
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Convergence Analysis

Problem

min
u
{J (u) = h(g(u))} , where g(u) = f [τ ](x̄0, u), h(x) =

τ∑
t=1

ht(xt)

Algorithm (Li & Todorov 2007)

u(k+1) = u(k) + LQRνk (J )(u(k)) (ILQR)

where LQRνk (J )(u(k)) is the oracle returning a direction
computed by dynamic programming with a regularization νk

Assumptions
• costs ht : µh-strongly convex, Lh-smooth, Mh-smooth Hessian
→ same for overall cost h

• dynamic f : lf -Lip. continuous, Lf smooth with σ(∇uf (x , u)) ≥ σf > 0
→ mapping g : lg -Lip.continous, Lg -smooth with σ(∇g(u)) ≥ σg > 0

with lg , Lg , σg estimable from lf , Lf , σf
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Convergence Analysis Viewpoint
ILQR as a generalized Gauss-Newton (Sideris & Bobrow 2005, Wright 1990)

• Overall ILQR minimizes a quadratic approx. of h on top of a linear approx. of g
• So it can be summarized as

LQRν(J )(u) = arg min
v

q
g(u)
h (`ug (v)) +

ν

2
‖v‖2

2

= −(∇g(u)∇2h(g(u))∇g(u)> + ν I)−1∇g(u)∇h(g(u))

which is a regularized generalized Gauss-Newton method

Convergence proof idea

1. For large enough regularization, LQRν(J )(u) ≈ −ν−1∇g(u)∇h(g(u))
→ linear global convergence possible as for a gradient descent

2. Denoting xnext = g(u + v) for v = LQRν(J )(u), with simple linear algebra,

xnext ≈ g(u) +∇g(u)>v = x − (∇2h(x) + ν(∇g(u)>∇g(u))−1)−1∇h(x).

so for small enough regularization xnext ≈ x −∇2h(x)−1∇h(x)
→ local quadratic convergence possible as for a Newton method

3. Can show that a regularization ν ∝ ‖∇h(x)‖2 ensures both!

Previous work

Global convergence of regularized Gauss-Newton a.k.a. Levenberg-Marquardt e.g. (Bergou et al. 2020)

Local convergence of generalized Gauss-Newton (Yamashita & Fukushima 2001, Diehl & Messerer 2019)
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Complexity Bound for ILQR

Theorem (R. et al. (2022)1)

Under the aforementioned assumptions, the ILQR algorithm equipped
with ν(u) = ν̄‖∇h(g(u))‖2 for ν̄ large enough converges to accuracy ε in

4θg (
√
δ0 −

√
δ)︸ ︷︷ ︸

1st phase

+ 2ρh ln

(
δ0

δ

)
+ 2α ln

(
θg
√
δ0 + ρg

θg
√
δ + ρg

)
︸ ︷︷ ︸

2nd phase

+O(ln ln(ε))︸ ︷︷ ︸
3rd phase

iterations, each having a comput. complexity O(τ(dim(x) + dim(u))3), where

• δ0 = J (u(0))− J ∗ is the initial gap
• δ is the gap of quadratic conv. : δ0 ≤ δ =⇒ 3rd phase
• ρh = Lh/µh is the condition number of the costs
• ρg = lg/σg is the condition number of the linearized traj.

• θh = Mh/µ
3/2
h is the param. of self-concordance of the costs

• θg = Lg/(σ2
g
√
µh) acts as self-concordance param. for the linear-quadratic decomp.

• α is another cond. nb

1Extensions to self-concordant or gradient dominated costs, differential dynamic programming algorithms available
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Code Example from Toolbox ILQC

import torch
from envs.car import Car
from envs.backward import lin_quad_backward, quad_backward
from envs.rollout import roll_out_lin

# Define control problem and candidate control variables
env = Car(model=’simple’, discretization=’euler’, cost=’exact’,

horizon=50, dt=0.02)
ctrls = torch.randn(env.horizon, env.dim_ctrl, requires_grad=True)

# ILQR/Gauss-Newton step
traj, costs = env.forward(ctrls, approx=’linquad’)
policies = lin quad backward(traj, costs, reg_ctrl=1.)[0]
gauss_newton_dir = roll out lin(traj, policies)
gauss_newton_step = ctrls + gauss_newton_dir

# Newton and Differentiable Dynamic Programming also available
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Conclusion

Summary
• Conv. guarantees for canonical noncvx pb
→ analyze problem at elementary scale

as done in a diff. prog. implementation

• Complexity bounds for ILQR
→ quad. convergence at low iteration cost

by using a diff. prog. implementation

Future directions
• Quantify cond. number w.r.t.

discretization step
→ Optimal window for

Model Predictive Control (MPC)?
• Use similar global convergence condition

to analyze MPC (Na & Anitescu 2020)
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Thank you for your attention!

17 / 17



Bergou, E. H., Diouane, Y. & Kungurtsev, V. (2020), ‘Convergence and complexity analysis of a
Levenberg-Marquardt algorithm for inverse problems’, Journal of Optimization Theory and
Applications 185(3), 927–944.

Diehl, M. & Messerer, F. (2019), Local convergence of generalized Gauss-Newton and sequential
convex programming, in ‘2019 IEEE 58th Conference on Decision and Control (CDC)’,
pp. 3942–3947.

Jacobson, D. & Mayne, D. (1970), Differential Dynamic Programming, Elsevier.

Li, W. & Todorov, E. (2007), ‘Iterative linearization methods for approximately optimal control and
estimation of non-linear stochastic system’, International Journal of Control 80(9), 1439–1453.

Liniger, A., Domahidi, A. & Morari, M. (2015), ‘Optimization-based autonomous racing of 1: 43
scale RC cars’, Optimal Control Applications and Methods 36(5), 628–647.

Mangasarian, O. (1966), ‘Sufficient conditions for the optimal control of nonlinear systems’, SIAM
Journal on Control 4(1), 139–152.

Na, S. & Anitescu, M. (2020), ‘Superconvergence of online optimization for model predictive
control’, arXiv preprint arXiv:2001.03707 .

R., V., Srinivasa, S., Fazel, M. & Harchaoui, Z. (2022), ‘Complexity bounds of iterative linear
quadratic optimization algorithms for discrete time nonlinear control’, arXiv preprint
arXiv:2204.02322 .

Sideris, A. & Bobrow, J. (2005), An efficient sequential linear quadratic algorithm for solving
nonlinear optimal control problems, in ‘Proceedings of the 2005 American Control Conference’,
pp. 2275–2280.

Wright, S. (1990), ‘Solution of discrete-time optimal control problems on parallel computers’,
Parallel Computing 16(2-3), 221–237.

Yamashita, N. & Fukushima, M. (2001), On the rate of convergence of the Levenberg-Marquardt
method, in ‘Topics in numerical analysis’, Springer, pp. 239–249.

17 / 17


	A Sufficient Condition for Global Convergence
	Implementation and Convergence Analysis
	References

