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Nonlinear Control Problems
Dynamics
Continuous Time i(t) —“f(ir(fiu(z))
Trajectory x(t) controlled by u(t)

via dynamics f to optimize cost h )
R 4

T ST
min / h(x(t), t)dt ’/}",‘
x(t),u(t) 0 @ S
st x(t) = f(x(t), u(t)), x(0)=%o -’
Discrete Time
Discretize dynamics and costs with e.g. Euler scheme Dynamics of a car
Optimize over controls up, ..., ur—1
Jmin D k()
UQyeeeylUr—1 t=1 Cost
_ h(z(t),t)
s.t. Xt+1 = f(Xt, Ut)7 X0=Xo

Algorithms Principle (Jacobson & Mayne 1970, Li & Todorov 2007)
Current controls uo, ..., ur—1 with trajectory xo, ..., xr
1. Linearize dynamics f around x;, u;

2. Take quadratic approx. of the costs h; around x;

3. Solve resulting lin. quad. problem

4. Repeat from 1. Tracking objective
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Autonomous Car Racing

Simple model of a car

2y

Optimized trajectory horizon 7 = 100

Zx
250
x = (zx,2y,0,v), u=(4,a) 200
Zx = vcosf 6 = vtan() ug 150
zy = vsinf v=a 100
50
0

0 10 2_0 30
Algo. converges fast to optimal trajectory Iterations

Convergence of the algorithm
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Autonomous Car Racing

Bicycle model of a car (Liniger et al. 2015)

2y

2

Models tire forces (highly non-linear)

Unclear whether the algorithm succeeded...
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Iterations

Convergence of the algorithm
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Outline

A Sufficient Condition for Global Convergence

Implementation and Convergence Analysis
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A Sufficient Condition for Global Convergence
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Optimization Viewpoint

Compositional Problem for u = (uo, ..., ur_1), with xo = X
min 7 (u) = h(f7(x0, u))

o 17l take sequence of controls outputs sequence of states
e /1 total cost on the states

Dynamics

for u = (ug,...,ur—1)

OO O W
forx = (z1,...,25) Objecti
(%) = 220y hu(ze) @ @ @ -

® . @ > T =1 (W)
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A Sufficient Condition for Global Convergence

Idea \ /
e Prove sufficient condition for global conv. \\\ /
of 1% order methods, such as, for ¢ > 0, \
IVT(u)llz = (T (u) = T7) ~
. L L Non-convex, gradient
Gradient dominating objective J L .
dominating function
Derivation

o Consider the total cost h to be p-strongly cvx s.t. ||V h(x)||3 > p(h(x) — h*)

« We have 7(u) = h(F")(sx0, ) 50 VT ()]3 = [V (0, u) V()3
where V, 1) (xo, u) € RI™Xdm) (transpose Jacobian)

e So if f"(xo, u) satisfies

IVuf (x0, ) All2

>o0>0
A2

Vu o(Vaf(x0,u)) = ir;\f

where g(A) is the minimal singular value of A, then

IVT ()3 > o*IVh(x)|13 > o pu(h(x) — 1) = o (T (u) = T*) v
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Interpretation of a Sufficient Condition for Global Convergence

Interpretation
g(vuf[T](Xo, u))>0
<= Reverse mode of auto-diff X — V, ") (xo, u)\ is injective
<= Forward mode of auto-diff v — V., (x0, u) " v is surjective
Here y = Vuf["](xo, u) " v is the linearization of the trajectories given as
Vi1 = Vi f (e, te) " ve + Vi F(xe, ue) "ve, o =0

So o(Vufl" (x0, u)) > 0 if the linearization of the trajectories are surjective

How to verify this condition from f only?

Previous work
Sufficient optimality conditions in continuous time done by Mangasarian (1966)

— Translatable in discrete time but requires convexity of implicitly defined functions...
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Characterization of a Sufficient Condition for Global Convergence

Lemma (R. et al. (2022))
If the linearization, v — V,f(x,u) v, of l-Lip. cont. dynamics f is surjective,
Vx,u, o(Vuf(x,u))>or >0,

then the linearization of the trajectories, v — V,f [T](Xo, u)Tv, is surjective,

of

[7] >
Vxo,u, o(Vuf"(x0,u)) > T+

>0,

Problem:

e Usually less control variables than state variables dim(u(t)) < dim(x(t))
So g(V.f(x(t), u(t))) > 0 impossible when looking in the continuous time

— But we can use multistep discretization schemes
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Intuition for a Sufficient Condition for Global Convergence

Pendulum dynamics

mé(t)

—mgsin0(t) — pl(t) + u(t)

One step Euler scheme i
f(Xe, ut) = Xeq1 for xe = (¢, we) with w =0

angle 0p11 = 0; + Awy
angle speed  wii1 = wr — A(gsin b — pw:) + Auy

Linearization surjective? X
Two steps Euler scheme f(x, ur) = xe41 with vy = (ve, vii1,2)

Ori1/2 = Oc + Dw Opi1 = 0; 4 ...+ A?v;
Wey12 = we — A(gsin 0y — pwr) + Avs Wil =wt 4+ ...+ Avepip

Linearization surjective w.r.t. ur = (ve,vii1/2) 7 v
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Overall Analysis

Trajectory decomposed in T steps

(0, u) = (x5 ... 5 x7)

s.t. Xep1 = f(Xt, Ut)

Dynamic fractionated in k steps

f(Xu Ut):Xt+1

s.t. X:+(s+1)/k=¢>(xt+s/k7 ut+s/k)

such as @(yt, ve) = ye + Af(ye, ve) ‘ — ’—‘ ’*‘ ‘
for f continuous-time dynamic. ‘ tiJ J J

Zooming in the dynamical structure

Sufficient condition for global convergence can be verified by
analyzing whether ¢ can be linearized by static feedback, see R. et al. (2022)
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Outline

A Sufficient Condition for Global Convergence

Implementation and Convergence Analysis
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Implementation

Gradient oracle
e Linear approx. of dynamics, costs,
e Gradients of objective computed through dynamics

D0
o ©
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Implementation

Gradient oracle
e Linear approx. of dynamics, costs,
e Gradients of objective computed through dynamics

Up Ut

Vo i Vhy Vi -Vh, va

Backward pass
Backpropagate gradients through Matrix Vector Products (MVP)
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Implementation

Linear Quadratic Regulator oracle
e Linear approx. of dynamics, quadratic approx. of costs
e Regularized linear quadratic approx. of objective minimized through dynamics

O —O
® ® ©
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Implementation

Linear Quadratic Regulator oracle
e Linear approx. of dynamics, quadratic approx. of costs
e Regularized linear quadratic approx. of objective minimized through dynamics

Backward pass
Define recursively minimum cost of reg. lin. quad. approx. starting from any y; at time ¢

i sy = gt () + miny, {voel + ervn (6 (vi,00))}
gy quad. approx of hy on z; lfj’"‘ lin. approx of f on @y, u;
where ¢; is a quad. function param. by Matrices Inverse & Matrices Products (MIMP)

12/17



Implementation
Linear Quadratic Regulator oracle
e Linear approx. of dynamics, quadratic approx. of costs
e Regularized linear quadratic approx. of objective minimized through dynamics

Ur_1

Backward pass
Record optimal control of reg. lin. quad. approx. starting from any y; at time t

w1 sy - argmin, {vurl3 + e (67" (4, 0)) }
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Implementation
Linear Quadratic Regulator oracle
e Linear approx. of dynamics, quadratic approx. of costs
e Regularized linear quadratic approx. of objective minimized through dynamics

v = m (1), Yi1 :f?’ut(yu’vt)
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Convergence Analysis

Problem

min {7 (u) = h(g(u))}, where g(u) = F(%0,u), h(x) = he(x)

Algorithm (Li & Todorov 2007)
o = u® 1R, () W™)  (ILQR)

where LQR,, (J)(u®) is the oracle returning a direction
computed by dynamic programming with a regularization v/

Assumptions
e costs h;: pp-strongly convex, Lp-smooth, Mu-smooth Hessian
— same for overall cost h

e dynamic f: /-Lip. continuous, Lf smooth with o(V.f(x,u)) > of >0
— mapping g: lg-Lip.continous, Lg-smooth with o(Vg(u)) > 0z >0
with lg, Lg, o4 estimable from If, L¢, of
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Convergence Analysis Viewpoint

ILQR as a generalized Gauss-Newton (Sideris & Bobrow 2005, Wright 1990)
e Overall ILQR minimizes a quadratic approx. of h on top of a linear approx. of g
e So it can be summarized as

LQR, (7)(u) = arg min g (£ (v)) + 5 |[vI]

= —(Ve(u)V*h(g(u))Ve(u)" + 1) Vg(u)Vh(g(u))

which is a regularized generalized Gauss-Newton method

Convergence proof idea

1. For large enough regularization, LQR,(J)(u) =~ —v~'Vg(u)Vh(g(u))

— linear global convergence possible as for a gradient descent

2. Denoting x"** = g(u + v) for v = LQR,(J)(u), with simple linear algebra,
X~ g(u) + Vg(u) Tv = x — (Vh(x) + (Ve (u) Ve(u)) ) Vh(x).

so for small enough regularization x"* ~ x — V2h(x) "'V h(x)
— local quadratic convergence possible as for a Newton method

3. Can show that a regularization v o ||V h(x)]|2 ensures both!

Previous work
Global convergence of regularized Gauss-Newton a.k.a. Levenberg-Marquardt e.g. (Bergou et al. 2020)

Local convergence of generalized Gauss-Newton (Yamashita & Fukushima 2001, Diehl & Messerer 2019)
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Complexity Bound for ILQR

Theorem (R. et al. (2022))

Under the aforementioned assumptions, the ILQR algorithm equipped
with v(u) = ||V h(g(u))||2 for U large enough converges to accuracy ¢ in

= 9)
40, (V5o — V) +2ppIn (‘i‘)> + 2aln (M) + O(InIn(e))
—_———— 0 Qg\/8+ Pg ———
Ist phase 3rd phase
2nd phase

iterations, each having a comput. complexity O(7(dim(x) + dim(u))?), where

o 5o = J(u®) — J* s the initial gap

® 0 is the gap of quadratic conv. : 6g < &6 = 3rd phase

® pp = Lp/up is the condition number of the costs

® pg = lg/og is the condition number of the linearized traj.
0 = Mh/ui/z is the param. of self-concordance of the costs

® 0y = Lg/(aé,/uh) acts as self-concordance param. for the linear-quadratic decomp.
e « is another cond. nb

LExtensions to self-concordant or gradient dominated costs, differential dynamic programming algorithms available
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Code Example from Toolbox ILQC

import torch

from envs.car import Car

from envs.backward import lin_quad_backward, quad_backward
from envs.rollout import roll_out_lin

# Define control problem and candidate control variables

env = Car (model=’'simple’, discretization='euler’, cost=’exact’,
horizon=50, dt=0.02)
ctrls = torch.randn(env.horizon, env.dim_ctrl, requires_grad=True)

# ILQR/Gauss-Newton step

traj, costs = env.forward(ctrls, approx=’'linquad’)
policies = lin_quad.backward(traj, costs, reg_ctrl=1.)[0]
gauss_newton_dir = roll out_lin(traj, policies)
gauss_newton_step = ctrls + gauss_newton_dir

# Newton and Differentiable Dynamic Programming also available
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Conclusion

Summary
e Conv. guarantees for canonical noncvx pb
— analyze problem at elementary scale

as done in a diff. prog. implementation

e Complexity bounds for ILQR
— quad. convergence at low iteration cost
by using a diff. prog. implementation

Future directions

e Quantify cond. number w.r.t.
discretization step

— Optimal window for
Model Predictive Control (MPC)?

e Use similar global convergence condition
to analyze MPC (Na & Anitescu 2020)

Model Predictive Control
& contouring objective

Thank you for your attention!

17/17



Bergou, E. H., Diouane, Y. & Kungurtsev, V. (2020), ‘Convergence and complexity analysis of a
Levenberg-Marquardt algorithm for inverse problems’, Journal of Optimization Theory and
Applications 185(3), 927-944.

Diehl, M. & Messerer, F. (2019), Local convergence of generalized Gauss-Newton and sequential
convex programming, in ‘2019 IEEE 58th Conference on Decision and Control (CDC)’,
pp. 3942-3947.

Jacobson, D. & Mayne, D. (1970), Differential Dynamic Programming, Elsevier.

Li, W. & Todorov, E. (2007), ‘Iterative linearization methods for approximately optimal control and
estimation of non-linear stochastic system’, International Journal of Control 80(9), 1439-1453.

Liniger, A., Domahidi, A. & Morari, M. (2015), ‘Optimization-based autonomous racing of 1: 43
scale RC cars’, Optimal Control Applications and Methods 36(5), 628—647.

Mangasarian, O. (1966), ‘Sufficient conditions for the optimal control of nonlinear systems’, SIAM
Journal on Control 4(1), 139-152.

Na, S. & Anitescu, M. (2020), ‘Superconvergence of online optimization for model predictive
control’, arXiv preprint arXiv:2001.03707 .

R., V., Srinivasa, S., Fazel, M. & Harchaoui, Z. (2022), ‘Complexity bounds of iterative linear
quadratic optimization algorithms for discrete time nonlinear control’, arXiv preprint
arXiv:2204.02322 .

Sideris, A. & Bobrow, J. (2005), An efficient sequential linear quadratic algorithm for solving
nonlinear optimal control problems, in ‘Proceedings of the 2005 American Control Conference’,
pp. 2275-2280.

Wright, S. (1990), ‘Solution of discrete-time optimal control problems on parallel computers’,
Parallel Computing 16(2-3), 221-237.

Yamashita, N. & Fukushima, M. (2001), On the rate of convergence of the Levenberg-Marquardt
method, in ‘Topics in numerical analysis’, Springer, pp. 239-249.

17/17



	A Sufficient Condition for Global Convergence
	Implementation and Convergence Analysis
	References

