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Problem

Nonlinear control — lterative linearization (ILQR)
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— Next iterate u;” = u; + v;f

Questions
1. Does ILQR converge? Can it be accelerated?

2. How do we characterize complexities for nonlinear control?
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Contributions

Regularized and Accelerated ILQR

1. ILQR is Gauss-Newton
— Regularized ILQR gets convergence to a stationary point

2. Potential acceleration by extrapolation steps
— Accelerated ILQR akin to Catalyst acceleration

— ILQR
—— ReglLQR
—— AcclLQR

Cost

Iteration
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Contributions
Oracles complexities

1. Oracles are solved by dynamic programming
— Gradient and Gauss-Newton have both cost in O(T)
2. Automatic-differentiation software libraries available
— Use auto.-diff. as oracle for direct implementation
Code summary available at https://github.com/vroulet/ilqgc

dynamics, cost = define_ctrl_pb()

ctrl = rand(dim_ctrl)

auto_diff_oracle = define_auto_diff_oracle(ctrl, dynamics)
dual_sol = sovle_dual_step(ctrl, cost, auto_diff_oracle)
next_ctrl = get_primal(dual_sol , auto_diff_oracle, cost)

Come see Poster #39 in Pacific Ballroom!
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