Optimization Oracles for Chains of Computations

Vincent Roulet, Zaid Harchaoui
Department of Statistics, University of Washington, Seattle

April 19, 2020

Chains of Computations

Definition (Chain of computations)
A chain ψ of τ computations parametrized by $w_{1: \tau}=\left(w_{1}, \ldots, w_{\tau}\right)$ is defined by τ elementary functions ϕ_{t} such that for $x_{0} \in \mathbb{R}^{d_{0}}$

$$
\begin{aligned}
& \psi\left(x_{0}, w_{1: \tau}\right)=x_{\tau} \\
& \text { where } \quad x_{t}=\phi_{t}\left(x_{t-1}, w_{t}\right) \quad \text { for } t \in\{1, \ldots, \tau\}
\end{aligned}
$$

Chains of Computations

Definition (Chain of computations)

A chain ψ of τ computations parametrized by $w_{1: \tau}=\left(w_{1}, \ldots, w_{\tau}\right)$ is defined by τ elementary functions ϕ_{t} such that for $x_{0} \in \mathbb{R}^{d_{0}}$

$$
\begin{aligned}
& \psi\left(x_{0}, w_{1: \tau}\right)=x_{\tau} \\
& \text { where } \quad x_{t}=\phi_{t}\left(x_{t-1}, w_{t}\right) \quad \text { for } t \in\{1, \ldots, \tau\}
\end{aligned}
$$

Example

Logistic function $\psi\left(x_{0}, w\right)=\log \left(1+\exp \left(-x_{0}^{\top} w\right)\right)$

1. $\phi_{1}\left(x_{0}, w\right)=x_{0}^{\top} w$,
2. $\phi_{2}\left(x_{1}\right)=1+\exp \left(x_{1}\right)$,
3. $\phi_{3}\left(x_{2}\right)=\log \left(x_{2}\right)$.

Chains of Computations

Definition (Chain of computations)

A chain ψ of τ computations parametrized by $w_{1: \tau}=\left(w_{1}, \ldots, w_{\tau}\right)$ is defined by τ elementary functions ϕ_{t} such that for $x_{0} \in \mathbb{R}^{d_{0}}$

$$
\begin{aligned}
& \psi\left(x_{0}, w_{1: \tau}\right)=x_{\tau} \\
& \text { where } \quad x_{t}=\phi_{t}\left(x_{t-1}, w_{t}\right) \quad \text { for } t \in\{1, \ldots, \tau\}
\end{aligned}
$$

Example

Deep networks

Chains of Computations

Example

Control problem

$$
\begin{array}{ll}
\min _{w_{1}, \ldots, w_{\tau}} & \left\|x_{\tau}-x^{\star}\right\|_{2}^{2}+\sum_{t=1}^{\tau} \lambda\left\|u_{t}\right\|_{2}^{2} \\
\text { sujet à } \quad x_{t+1}=\phi_{t}\left(x_{t}, w_{t+1}\right), \quad x_{0}=\hat{x}_{0}
\end{array}
$$

State at time $\mathrm{t}+1$

Optimization Problem

Objective

Given a chain of computations ψ, convex functions $h h_{i}, g_{t}$ and $x \in \mathbb{R}^{d_{0}}$

$$
\min _{w_{1: \tau}} h\left(\psi\left(x, w_{1: \tau}\right)\right)+\sum_{t=1}^{\tau} g_{t}\left(w_{t}\right)
$$

Optimization Problem

Objective

Given a chain of computations ψ, convex functions $h h_{i}, g_{t}$ and $x_{i} \in \mathbb{R}^{d_{0}}$

$$
\min _{w_{1: \tau}} \frac{1}{n} \sum_{i=1}^{n} h_{i}\left(\psi\left(x_{i}, w_{1: \tau}\right)\right)+\sum_{t=1}^{\tau} g_{t}\left(w_{t}\right)
$$

Optimization Problem

Objective

Given a chain of computations ψ, convex functions $h h_{i}, g_{t}$ and $x_{i} \in \mathbb{R}^{d_{0}}$

$$
\min _{w_{1: \tau}} \frac{1}{n} \sum_{i=1}^{n} h_{i}\left(\psi\left(x_{i}, w_{1: \tau}\right)\right)+\sum_{t=1}^{\tau} g_{t}\left(w_{t}\right)
$$

Questions

How can we decompose (i) gradients, (ii) Gauss-Newton, (iii) Newton, ((iv) risk-sensitive gradients), (v) proximal points oracles for

$$
f\left(w_{1: \tau}\right)=h\left(\psi\left(x, w_{1: \tau}\right)\right)+\sum_{t=1}^{\tau} g_{t}\left(w_{t}\right)
$$

into the dynamical structure of $\psi(x, \cdot)$?

Oracles Decomposition

Approach

Oracles are defined by subproblems

1. Decompose theoretically the sub-problems into the chain of computations
2. Get an efficient implementation of the subproblems

Oracles Decomposition

Approach

Oracles are defined by subproblems

1. Decompose theoretically the sub-problems into the chain of computations
2. Get an efficient implementation of the subproblems

Model minimization oracles

Given a model of f at x s.t. $m_{f}(y ; x) \approx f(y)$ (e.g. $\left.\left|m_{f}(y ; x)-f(y)\right| \leq L\|x-y\|_{2}^{2}\right)$
Oracle defined as (with γ stepsize)

$$
\mathcal{O} f(x)=\underset{y}{\arg \min } m_{f}(x+y ; x)+\frac{1}{2 \gamma}\|y\|_{2}^{2}
$$

Examples:

1. Gradient $m_{f}=\ell_{f}$ (linear approx.)
2. For $f=h \circ \psi+g$, Gauss-Newton $m_{f}=q_{h} \circ \ell_{\psi}+q_{g}$ (mixed approx.)
3. Newton $m_{f}=q_{f}$ (quadratic approx.)

Gradient Oracle

Gradient oracle decomposition

For

$$
f\left(w_{1: \tau}\right)=h\left(\psi\left(x, w_{1: \tau}\right)\right)+\sum_{t=1}^{\tau} g_{t}\left(w_{t}\right) \quad \text { with } \quad \begin{array}{ll}
\psi\left(x, w_{1: \tau}\right) & =x_{\tau} \\
x_{t+1} \\
x_{0}
\end{array} \quad=\phi_{t}\left(x_{t}, w_{t}\right)
$$

Gradient Oracle

Gradient oracle decomposition

For

$$
f\left(w_{1: \tau}\right)=h\left(\psi\left(x, w_{1: \tau}\right)\right)+\sum_{t=1}^{\tau} g_{t}\left(w_{t}\right) \quad \text { with } \quad \begin{array}{ll}
\psi\left(x, w_{1: \tau}\right) & =x_{\tau} \\
x_{t+1} \\
x_{0}
\end{array} \quad=\phi_{t}\left(x_{t}, w_{t}\right)
$$

gradient is given by $-\gamma \nabla f\left(w_{1: \tau}\right)=v_{1: \tau}{ }^{*}$ solution of

$$
\begin{aligned}
& \min _{\substack{v_{1}, \ldots, v_{\tau} \\
y_{0}, \ldots, y_{\tau}}} \\
& \text { subject to } \quad y_{t}=\overbrace{\nabla h\left(x_{\tau}\right)^{\top} y_{\tau}}^{\nabla_{x} \phi_{t}\left(w_{t}, x_{t-1}\right)^{\top} y_{t-1}+\nabla_{w} \phi_{t}\left(w_{t}, x_{t-1}\right)^{\top} v_{t}}, \quad \overbrace{\sum_{t=1}^{\tau} \nabla g_{t}\left(w_{t}\right)^{\top} v_{t}+\frac{1}{2 \gamma} \sum_{t=1}^{\tau}\left\|v_{t}\right\|_{2}^{2}}^{\text {linearization of the objective }} \overbrace{\text { linearization of the computations }}^{\text {linearization of the penalty }} y_{0}=0
\end{aligned}
$$

Gradient Oracle

Gradient oracle decomposition

For

$$
f\left(w_{1: \tau}\right)=h\left(\psi\left(x, w_{1: \tau}\right)\right)+\sum_{t=1}^{\tau} g_{t}\left(w_{t}\right) \quad \text { with } \begin{array}{ll}
\psi\left(x, w_{1: \tau}\right) & =x_{\tau} \\
x_{t+1} \\
x_{0}
\end{array} \quad=\phi_{t}\left(x_{t}, w_{t}\right)
$$

gradient is given by $-\gamma \nabla f\left(w_{1: \tau}\right)=v_{1: \tau}{ }^{*}$ solution of

$$
\begin{array}{ll}
\min _{\substack{v_{1}, \ldots, v_{\tau} \\
y_{0}, \ldots, y_{\tau}}} & \tilde{h}_{\tau}^{\top} y_{\tau}+\sum_{t=1}^{\tau} \tilde{g}_{t}^{\top} v_{t}+\frac{1}{2 \gamma}\left\|v_{t}\right\|_{2}^{2} \\
\text { subject to } & y_{t}=\Phi_{t}^{\times \top} y_{t-1}+\Phi_{t}^{w \top} v_{t}, \quad y_{0}=0
\end{array}
$$

Quadratic problem with linear dynamical constraints

Dual Viewpoint

With dual variables λ_{t},
$\min _{\substack{v_{1}, \ldots, v_{\tau} \\ y_{1}, \ldots, y_{\tau}}} \sup _{\lambda_{1}, \ldots, \lambda_{\tau}} \tilde{h}_{\tau}^{\top} y_{\tau}+\sum_{t=1}^{\tau} \tilde{g}_{t}^{\top} v_{t}+\frac{1}{2 \gamma}\left\|v_{t}\right\|_{2}^{2}+\sum_{t=1}^{\tau} \lambda_{t}^{\top}\left(\Phi_{t}^{\times \top} y_{t-1}+\Phi_{t}^{w \top} v_{t}-y_{t}\right)+\lambda_{0}^{\top} y_{0}$
Swapping $\min _{y_{0}, \ldots, y_{\tau}}$ and $\sup _{\lambda_{1}, \ldots, \lambda_{\tau}}$, after minimization in y_{t}, we get

$$
\begin{align*}
\min _{w_{1}, \ldots, w_{\tau}} \sup _{\lambda_{0}, \ldots, \lambda_{\tau}} & \sum_{t=1}^{\tau}\left(\tilde{g}_{t}+\Phi_{t}^{w} \lambda_{t}\right)^{\top} v_{t}+\frac{1}{2 \gamma}\left\|v_{t}\right\|_{2}^{2} \\
\text { subject to } & \lambda_{\tau}=\tilde{h}_{\tau}, \quad \lambda_{t-1}=\Phi_{t}^{\times} \lambda_{t} \tag{1}
\end{align*}
$$

Gradient given by $-\gamma \nabla f\left(w_{1: \tau}\right)=v_{1: \tau}{ }^{*}$ with

$$
\begin{equation*}
v_{t}^{*}=-\gamma\left(\tilde{g}_{t}+\Phi_{t}^{w} \lambda_{t}\right) \tag{2}
\end{equation*}
$$

Algorithm (Automatic-Differentiation)

1. Compute dual variables by λ_{t} by (1)
2. Output gradient by (2)

Dynamic Programming Viewpoint

Define optimal cost starting from \hat{y}_{t} at time t,

$$
\begin{aligned}
\operatorname{cost}\left(\hat{y}_{t-1}\right)= & \min _{\substack{v_{t}, \ldots, v_{\tau} \\
y_{t-1, \ldots, y_{\tau}}}} \tilde{h}_{\tau}^{\top} y_{\tau}+\sum_{s=t}^{\tau} \tilde{g}_{s}^{\top} v_{s}+\frac{1}{2 \gamma}\left\|v_{s}\right\|_{2}^{2} \\
& \text { subject to } \quad y_{s}=A_{s}^{\top} y_{s-1}+B_{s}^{\top} v_{s}, \quad y_{t-1}=\hat{y}_{t-1} \quad \text { for } s=t, \ldots, \tau
\end{aligned}
$$

Dynamic Programming Viewpoint

Define optimal cost starting from \hat{y}_{t} at time t,

$$
\operatorname{cost}\left(\hat{y}_{t-1}\right)=\min _{v_{t}} \quad \tilde{g}_{t}^{\top} v_{t}+\frac{1}{2 \gamma}\left\|v_{t}\right\|_{2}^{2}+\operatorname{cost}\left(\Phi_{s}^{\times \top} y_{t-1}+\Phi_{t}^{w \top} v_{t}\right)
$$

Dynamic Programming Viewpoint

Define optimal cost starting from \hat{y}_{t} at time t,

$$
\operatorname{cost}\left(\hat{y}_{t-1}\right)=\min _{v_{t}} \quad \tilde{g}_{t}^{\top} v_{t}+\frac{1}{2 \gamma}\left\|v_{t}\right\|_{2}^{2}+\operatorname{cost}\left(\Phi_{s}^{\times \top} y_{t-1}+\Phi_{t}^{w^{\top}} v_{t}\right)
$$

Can show recursively

$$
\begin{aligned}
\operatorname{cost}\left(y_{t}\right) & =\lambda_{t}^{\top} y_{t-1} \\
\text { where } \quad \lambda_{\tau} & =\tilde{h}_{\tau}, \quad \lambda_{t-1}=\Phi_{t}^{\times} \lambda_{t}
\end{aligned}
$$

Optimal controls

$$
\begin{aligned}
v_{t}^{*} & =\underset{v_{t}}{\arg \min } \tilde{g}_{t}^{\top} v_{t}+\frac{1}{2 \gamma}\left\|v_{t}\right\|_{2}^{2}+\operatorname{cost}\left(\Phi_{s}^{\times \top} y_{t-1}+\Phi_{t}^{w \top} v_{t}\right) \\
& =-\gamma\left(\tilde{g}_{t}+\Phi_{t}^{w} \lambda_{t}\right)
\end{aligned}
$$

Automatic-Differentiation

Viewpoints

1. Traditional: chain rule, Lagrangian trick, ...
2. Dual: (i) Highlight "co-states" λ_{t} as dual variables of the linearized pb,
(ii) Useful to generalize to e.g. proximal points
3. Dynamic Programming: Can tackle gradients, Gauss-Newton, Newton

Consequences

1. Baur-Strassen's theorem (?),
"computing a derivative is up to a constant factor more expansive than computing the function"
2. Access to, by machine learning libraries (e.g. Pytorch (?)),

$$
\lambda \rightarrow \nabla \psi\left(w_{1: \tau}, x\right) \lambda
$$

We do not store $\nabla \psi\left(w_{1: \tau}, x\right)$ but have access to the linear form by only storing $\left(\nabla \phi_{t}\right)_{t=1}^{\tau}$

Automatic differentiation

$$
\nabla f\left(w_{1: \tau}\right)=\nabla_{w_{1: \tau}} \psi\left(x, w_{1: \tau}\right) \nabla h\left(x_{\tau}\right)
$$

Gradient, Gauss-Newton, Newton by Dynamic Programming

On a point $w_{1: \tau} \in \mathbb{R}^{p}$, given a step-size γ, for an objective of the form $h \circ \psi+g$,

Gradient

A gradient step is defined as

$$
w_{1: \tau}^{+}=\underset{v_{1: \tau}}{\arg \min } \ell_{h \circ \psi}\left(v_{1: \tau} ; w_{1: \tau}\right)+\ell_{g}\left(v_{1: \tau} ; w_{1: \tau}\right)+\frac{1}{2 \gamma}\left\|v_{1: \tau}-w_{1: \tau}\right\|_{2}^{2},
$$

Gauss-Newton

A (regularized generalized) Gauss-Newton step is defined as

$$
w_{1: \tau}^{+}=\underset{v_{1: \tau}}{\arg \min } q_{h}\left(\ell_{\psi}\left(v_{1: \tau} ; w_{1: \tau}\right) ; \psi\left(w_{1: \tau}\right)\right)+q_{g}\left(v_{1: \tau} ; w_{1: \tau}\right)+\frac{1}{2 \gamma}\left\|v_{1: \tau}-w_{1: \tau}\right\|_{2}^{2},
$$

Newton

A (regularized) Newton step is defined as

$$
w_{1: \tau}^{+}=\underset{v_{1: \tau}}{\arg \min } q_{h \circ \psi}\left(v_{1: \tau} ; w_{1: \tau}\right)+q_{g}\left(v_{1: \tau} ; w_{1: \tau}\right)+\frac{1}{2 \gamma}\left\|v_{1: \tau}-w_{1: \tau}\right\|_{2}^{2}
$$

Gradient, Gauss-Newton, Newton by Dynamic Programming

Proposition ((???))

Gradient, Gauss-Newton, Newton steps amount to solve

$$
\begin{aligned}
\min _{\substack{v_{1}, \ldots, v_{\tau} \\
y_{0}, \ldots, y_{\tau}}} & \sum_{t=1}^{\tau} \frac{1}{2} y_{t}^{\top} P_{t} y_{t}+p_{t}^{\top} y_{t}+y_{t-1}^{\top} R_{t} v_{t}+\frac{1}{2} v_{t}^{\top} Q_{t} v_{t}+q_{t}^{\top} v_{t}+\frac{1}{2 \gamma}\left\|v_{t}\right\|_{2}^{2} \\
\text { subject to } & y_{t}=\Phi_{t}^{\times \top} t y_{t-1}+\Phi_{t}^{w \top} v_{t} \quad \text { for } \quad t \in\{1, \ldots, \tau\}, \\
& y_{0}=0,
\end{aligned}
$$

Example

For Newton steps, defining

$$
\lambda_{\tau}=\nabla h\left(\psi\left(w^{(k)}\right)\right), \quad \lambda_{t-1}=\nabla_{x_{t-1}} \phi_{t}\left(w_{t}, x_{t-1}\right) \lambda_{t} \quad \text { for } t \in\{1, \ldots, \tau\}
$$

we have

$$
\begin{aligned}
P_{\tau} & =\nabla^{2} h\left(\psi\left(w^{(k)}\right)\right), P_{t-1}=\nabla_{x_{t-1} x_{t-1}}^{2} \phi_{t}\left(w_{t}, x_{t-1}\right)\left[\cdot, \cdot, \lambda_{t}\right] \quad \text { for } t \in\{1, \ldots, \tau\}, \\
R_{t} & =\nabla_{x_{t-1} w_{t}}^{2} \phi_{t}\left(w_{t}, x_{t-1}\right)\left[\cdot, \cdot, \lambda_{t}\right], Q_{t}=\nabla^{2} g_{t}\left(w_{t}\right)+\nabla_{w_{t} w_{t}}^{2} \phi_{t}\left(w_{t}, x_{t-1}\right)\left[\cdot, \cdot, \lambda_{t}\right]
\end{aligned}
$$

Implementation of Gauss-Newton by Automatic Differentiation

Dual of Gauss-Newton step

1. Formulation

$$
\begin{aligned}
& \quad \min _{\lambda} \quad \tilde{q}_{h}^{\star}(\lambda)+\tilde{q}_{g}^{\star}\left(-\nabla \psi\left(w_{1: \tau}, x\right) \lambda\right), \\
& \text { where } \quad \tilde{q}_{h}(y)=q_{h}\left(\psi\left(w_{1: \tau}\right)+y ; \psi\left(w_{1: \tau}\right)\right), \\
& \\
& \tilde{q}_{g}(z)=q_{g}\left(w_{1: \tau}+z ; w_{1: \tau}\right)+\|z\|_{2}^{2} / 2
\end{aligned}
$$

2. Gauss-Newton-step reads $z^{(k+1)}=w_{1: \tau}+\nabla \tilde{q}_{g}^{\star}\left(-\nabla \psi\left(w_{1: \tau}\right) \lambda^{*}\right)$
3. Can be solved by $2 q+1$ calls to an automatic differentiation procedure where q is the output dimension of ψ.

Gradient, Gauss-Newton, Newton by Dynamic Programming

Consequences

1. All those steps are linear quadratic control problems
2. Can be solved by dynamic programming with a linear complexity w.r.t. τ

Implementation

1. Compute in a backward pass, cost-to-go functions as quadratics,
2. Store solutions at each step as $v_{t}^{*}\left(y_{t-1}\right)=K_{t} y_{t-1}+k_{t}$
3. Solve subproblems in a forward pass by,

$$
\begin{aligned}
y_{0} & =0 \\
v_{t}^{*} & =K_{t} y_{t-1}+k_{t} \\
y_{t} & =\Phi_{t}^{\times \top} y_{t-1}+\Phi_{t}^{w \top} w_{t} \quad \text { for } t=1, \ldots \tau
\end{aligned}
$$

Actual Algorithms in Non-Linear Control

Differential Dynamic Programming (?)

1. Idea: Back-propagate quadratic approximations of Bellman's equation

$$
\operatorname{cost}\left(x_{t-1}\right)=\min _{y_{t}} g_{t}\left(w_{t}\right)+\operatorname{cost}\left(\phi_{t}\left(x_{t}, w_{t}\right)\right)
$$

2. Resulting cost-to-go functions are similar to the ones for Newton's method but the forward pass reads

$$
\begin{aligned}
y_{0} & =\hat{x}_{0} \\
v_{t}^{*} & =K_{t} y_{t-1}+k_{t} \\
y_{t} & =\phi_{t}\left(y_{t-1}, w_{t}\right) \quad \text { for } t=1, \ldots \tau
\end{aligned}
$$

Analysis ?

1. Can be analyzed as perturbed Newton (?)
2. Yet, better behavior in practice (?)
3. Can be seen as a recursive projected method on states (?)

Smoothness Considerations

Proposition (Automatic smoothness computations)
Assume computations ϕ_{t} to be $\ell_{\phi_{t}}$ Lipschitz continuous and $L_{\phi_{t}}$ smooth,

1. Upper bound on Lipschitz-continuity of ψ is given by $\ell_{\psi}=\ell_{\tau}$, where

$$
\ell_{t}=\ell_{\phi_{t}}+\ell_{t-1} \ell_{\phi_{t}}, \quad \ell_{0}=0 .
$$

2. Upper-bound of Smoothness of ψ is given by $L_{\psi}=L_{\tau}$, where

$$
L_{t}=L_{t-1} \ell_{\phi_{t}}+L_{\phi_{t}}\left(1+\ell_{t-1}\right)^{2}, \quad L_{0}=0 .
$$

Automatic smoothness computations

Generalizes to smoothness estim. of deep networks on balls (?)
Get automatic smoothness comparisons of deep networks
Can be used to derive optimization convergence rates

