Optimization Oracles
for Chains of Computations

Vincent Roulet, Zaid Harchaoui
Department of Statistics, University of Washington, Seattle

April 19, 2020

UNIVERSITY of o)
WASHINGTON

Chains of Computations

Definition (Chain of computations)
A chain 1 of 7 computations parametrized by wi.; = (w1, ..., w;) is defined by
7 elementary functions ¢; such that for xo € R%

w(X07 Wl:‘r) = Xr

where x; = ¢¢(xe—1,we) fort €{1,...,7}

s}

Chains of Computations

Definition (Chain of computations)
A chain 1 of 7 computations parametrized by wi.; = (w1, ..., w;) is defined by
7 elementary functions ¢; such that for xo € R%

w(X07 Wl:‘r) = Xr

where x; = ¢¢(xe—1,we) fort €{1,...,7}

Example

Logistic function 9(xo, w) = log(1 4 exp(—xy w))
1. ¢1(x0, w) = xg W,
2. ¢o(x1) = 1+ exp(x),
3. éa(xe) = log(x2).

[0 s 0 — | 63 s 5 = w0, w
%]] vorw)

Chains of Computations

Definition (Chain of computations)

A chain ¢ of T computations parametrized by wi.; = (wi, ..., w;) is defined by
7 elementary functions ¢; such that for xp € R%

w(X07 Wl:‘r) = Xr

where x; = ¢e(xe—1,we) fort € {1,...,7}

Example
Deep networks

w1 We wr

Input Output

Xt—1 I l X

X0 —> VA Ve . —> xr = (X0, Wi:r)
I

| ! ¢t1

| |

Linear operation - - -- Non-linear operation

\

e.g. product w, x¢_1 e.g., sigmoid

Chains of Computations

Example
Control problem

Wi, Wr

)
min [— x4+ 3 M3
t=1

sujet & xep1 = Pe(Xe, Wer1), X0 = Xo

Dynamic
State at time t X = @y (xX-1,W0;) State at time t+1

Optimization Problem

Objective
Given a chain of computations ¢, convex functions h hj, g: and x € R®

wir

min h(w(x, WlZT)) + ng(wt)

17

Optimization Problem

Objective
Given a chain of computations ¢, convex functions h h;, g: and x; € R%

rVTlll?n % Z hi(Y(xi, wi:r)) + th(wt)
T i=1 t=1

17

Optimization Problem

Objective
Given a chain of computations ¢, convex functions h h;, g: and x; € R%

rJ/\l?n % Z hi(Y(xi, wi:r)) + th(wt)
T i=1 t=1

Questions
How can we decompose (i) gradients, (ii) Gauss-Newton, (iii) Newton, ((iv)
risk-sensitive gradients), (v) proximal points oracles for

f(wir) = b0 wir)) + Y ge(we)

into the dynamical structure of ¥(x,-) ?

Oracles Decomposition

Approach
Oracles are defined by subproblems

1. Decompose theoretically the sub-problems into the chain of computations

2. Get an efficient implementation of the subproblems

6/17

Oracles Decomposition

Approach
Oracles are defined by subproblems

1. Decompose theoretically the sub-problems into the chain of computations

2. Get an efficient implementation of the subproblems

Model minimization oracles
Given a model of f at x s.t. me(y; x) = f(y) (e.g. |me(y; x)—F(¥)| < Lx—y|3)
Oracle defined as (with v stepsize)

. 1
Of(x) = argminme(x + y; x) + —||y||§
y 2y

Examples:

1. Gradient ms = £ (linear approx.)
2. For f = hot + g, Gauss-Newton ms = qn o £y + qg (mixed approx.)
3. Newton ms = qr (quadratic approx.)

6/17

Gradient Oracle

Gradient oracle decomposition
For

T w(X7 Wl:‘r) = Xr
f(Wl;-,—) = h('l/J(X, Wl;r)) + th(Wt) with Xt+1 = ¢t(Xt, Wt)

t=1 X0 =X

Gradient Oracle

Gradient oracle decomposition

For
T 1/)(X7 Wl:‘r) = Xr
f(wir) = h((x, wir) +) ge(we) with xen = e(xe,)
t=1 Xo =X

gradient is given by —yVf(wi..) = vi..* solution of

linearization of the penalty

linearization of the objective

— — T T
. 1
Jmn, Vh(x:) yr +ZVgt<wt)Tvt+g Z Ivell?
R t= t=

subject to yr = Vit (we, xe—1) ' Ye—1 + Vide(we, xe—1) ve, yo =0

linearization of the computations

Gradient Oracle

Gradient oracle decomposition

For
T 1/J(X: WliT) = Xr
F(wir) = h($(x, war))+ > ge(we) with xein = i (xe, w)
t=1 X0 =X

gradient is given by —yVf(w1.+) = vi.- ™ solution of

.
. ~ - 1
min b Ty + E B e+ —|vel3
Viseeny Vo 2’)/
Y05 YT t=1

subjectto yr =@ Ty 14+ 0¥ v, =0

Quadratic problem with linear dynamical constraints

Dual Viewpoint
With dual variables),

min sup Ry, + g vt+ |Vt||2+ AT Ty + O Tve —y) + 0 o
I M Z * Z

Swapping miny, ...y, and sup, . , after minimization in y:, we get

.....

T

. ~ w 1
min, sup Z(gf+¢t A) e+ ZHWH%
S
subject to A\, = h,, A =®FN, (1)

Gradient given by —yVf(wi.r) = vi.;™ with
vi = —(& + PY) (2)

Algorithm (Automatic-Differentiation)
1. Compute dual variables by \; by (1)
2. Output gradient by (2)

Dynamic Programming Viewpoint
Define optimal cost starting from y; at time t,

ViyeooyVor
Yt—1,...yr

N . 1
cost(ye 1) = min wzgs ot 5B

subject to s = Asyso1 + B Ve, Yeo1 = Pt

fors=t,...

, T

9/17

Dynamic Programming Viewpoint

Define optimal cost starting from j; at time t,

A . ~ 1 X w
cost(§—1) = min gtT Ve + —27 Hvt||§ + cost(¢5Ty:_1 + P/ Tvt)
vt

9/17

Dynamic Programming Viewpoint

Define optimal cost starting from y; at time t,
A~ . ~ 1 X w
cost(P:—1) = min & vi+ ZHW“% + cost(®} Tye_1 + &Y T vi)
Vi

Can show recursively
cost(ys) = \: | ye—1
where A\, = Ay, 1= ®7N,
Optimal controls

* . ~ 1 X w
vi = argming, v + 5”‘&”% + cost(¢sTyt_1 + & Tvt)

t

= —7(& + d)

9/17

Automatic-Differentiation

Viewpoints
1. Traditional: chain rule, Lagrangian trick, ...

2. Dual: (i) Highlight “co-states"); as dual variables of the linearized pb,
(ii) Useful to generalize to e.g. proximal points

3. Dynamic Programming: Can tackle gradients, Gauss-Newton, Newton

Consequences
1. Baur-Strassen’s theorem (7),

“computing a derivative is up to a constant factor
more expansive than computing the function"

2. Access to, by machine learning libraries (e.g. Pytorch (7)),
A = Vio(wir, x)A

We do not store Vi)(wi.-, x) but have access to the linear form
by only storing (Vo)1

Automatic differentiation

Vi(wir) = Vi (X, wi:r)Vh(x:)

Wi.r
|
w1 /W;z\ w3
X ;¢1 ; — X1 __XQ @ 1 (X WlT)
O e — A OF e A — 3 p—
&7 7 Y
V¥ (x, wier)b Vo (X, wi.r Vs (%, wi.r)by

11/17

Gradient, Gauss-Newton, Newton by Dynamic Programming

On a point wi.» € RP, given a step-size v, for an objective of the form ho + g,

Gradient
A gradient step is defined as

. 1
wit, = arg min Lpoy (Vi wair) + g (Vi wiir) + =—|[vier — war |13,

Vi:r 27

Gauss-Newton
A (regularized generalized) Gauss-Newton step is defined as

. 1
wy', = argmin ga(Ly (viir; wir); 0 (Wiir) + Gg(vir; wasr) + ZHVLT — w3,
Viir

Newton
A (regularized) Newton step is defined as

. 1
w; . = arg min Ghow (Vir; wiir) + Gg(viir; wir) + g”vlr‘r - Wl:ng.
Vi

Gradient, Gauss-Newton, Newton by Dynamic Programming

Proposition ((z7))
Gradient, Gauss-Newton, Newton steps amount to solve

. 1
min Z e ! Peye + b ye + yi- 1RtVr+ 5Vt Qe + g ve + =l vell3

ViyeeeyVp 2
YO YT t=1

subject to v = Oty + OV v for te{l,...,7},
Yo = 07

Example
For Newton steps, defining

Ar = VA(wWH)), Aeo1 = Vi de(we, xe—1)Ae for t € {1,...,7},
we have
= V2h(p(wWW)), Poy = V2, be(We, xe—1)[, 5 A for t € {1,..., 7},
Re = V2, 1w ®e(We, xe—1)[, , Ael, Qe = V2ge(We) + Vi, be(We, xe—1)[1, -, Ae-

13/17

Implementation of Gauss-Newton by Automatic Differentiation

Dual of Gauss-Newton step
1. Formulation
mAin dh(A) + Gz (= Vo (wir, x)N),
where n(y) = gn(d(wrr) + y;9h(war)),
Ge(2) = qg(wir + 2 war) + [|2]3/2
2. Gauss-Newton-step reads 26D — s+ Vg (= Vip(wir)A")

3. Can be solved by 2qg + 1 calls to an automatic differentiation procedure
where g is the output dimension of .

14 /17

Gradient, Gauss-Newton, Newton by Dynamic Programming

Consequences

1. All those steps are linear quadratic control problems

2. Can be solved by dynamic programming with a linear complexity w.r.t. 7

Implementation

1. Compute in a backward pass, cost-to-go functions as quadratics,
2. Store solutions at each step as v; (yi—1) = Keyr—1 + ke
3. Solve subproblems in a forward pass by,

yo=0

v = Keye—1 + ke

xT wT
Vi=®F yi1+ P we fort=1,...7

15 /17

Actual Algorithms in Non-Linear Control

Differential Dynamic Programming (7)
1. Idea: Back-propagate quadratic approximations of Bellman's equation
cost(x¢—1) = n;:n ge(we) + cost(de(xe, we))
2. Resulting cost-to-go functions are similar to the ones for Newton's method
but the forward pass reads
Yo = %o
vi = Kiye—1 + ke
Ve = ¢e(Yem1,we) fort=1,...7
Analysis ?
1. Can be analyzed as perturbed Newton (7)
2. Yet, better behavior in practice (7)

3. Can be seen as a recursive projected method on states (7)

16

17

Smoothness Considerations

Proposition (Automatic smoothness computations)
Assume computations ¢: to be Ly, Lipschitz continuous and Ly, smooth,
1. Upper bound on Lipschitz-continuity of i is given by ¢, = {-, where
by =Ly, + li_1ls,, 4o = 0.
2. Upper-bound of Smoothness of i is given by Ly = L,, where
e =Le1ly + Lo, (1 4+ £:-1)®, Lo=0.

Automatic smoothness computations
Generalizes to smoothness estim. of deep networks on balls ()

Get automatic smoothness comparisons of deep networks
Can be used to derive optimization convergence rates

17 /17

