
Optimization Oracles
for Chains of Computations

Vincent Roulet, Zaid Harchaoui
Department of Statistics, University of Washington, Seattle

April 19, 2020

Chains of Computations

Definition (Chain of computations)
A chain ψ of τ computations parametrized by w1:τ = (w1, . . . ,wτ) is defined by
τ elementary functions φt such that for x0 ∈ Rd0

ψ(x0,w1:τ) = xτ
where xt = φt(xt−1,wt) for t ∈ {1, . . . , τ}

Example
Logistic function ψ(x0,w) = log(1 + exp(−x>0 w))

1. φ1(x0,w) = x>0 w ,
2. φ2(x1) = 1 + exp(x1),
3. φ3(x2) = log(x2).

x0 φ1 x1 φ2 x2 φ3 x3 = ψ(x0,w)

w

2 / 17

Chains of Computations

Definition (Chain of computations)
A chain ψ of τ computations parametrized by w1:τ = (w1, . . . ,wτ) is defined by
τ elementary functions φt such that for x0 ∈ Rd0

ψ(x0,w1:τ) = xτ
where xt = φt(xt−1,wt) for t ∈ {1, . . . , τ}

Example
Logistic function ψ(x0,w) = log(1 + exp(−x>0 w))

1. φ1(x0,w) = x>0 w ,
2. φ2(x1) = 1 + exp(x1),
3. φ3(x2) = log(x2).

x0 φ1 x1 φ2 x2 φ3 x3 = ψ(x0,w)

w

2 / 17

Chains of Computations

Definition (Chain of computations)
A chain ψ of τ computations parametrized by w1:τ = (w1, . . . ,wτ) is defined by
τ elementary functions φt such that for x0 ∈ Rd0

ψ(x0,w1:τ) = xτ
where xt = φt(xt−1,wt) for t ∈ {1, . . . , τ}

Example
Deep networks

x0

Input

φ1

w1

. . . `t

wt

φt

. . . φτ

wτ

xτ = ψ(x0,w1:τ)

Output

Linear operation

e.g. product w>t xt−1

Non-linear operation
e.g., sigmoid

xt−1 xt

3 / 17

Chains of Computations

Example
Control problem

min
w1,...,wτ

‖xτ − x?‖22 +
τ∑

t=1

λ‖ut‖22

sujet à xt+1 = φt(xt ,wt+1), x0 = x̂0

��−1

�
⋆

State at time t+1State at time t

��

�
⋆

��

Dynamic
 �� = ��(��−1 ,��)

4 / 17

Optimization Problem

Objective
Given a chain of computations ψ, convex functions h hi , gt and x ∈ Rd0

min
w1:τ

h(ψ(x ,w1:τ)) +
τ∑

t=1

gt(wt)

Questions
How can we decompose (i) gradients, (ii) Gauss-Newton, (iii) Newton, ((iv)
risk-sensitive gradients), (v) proximal points oracles for

f (w1:τ) = h(ψ(x ,w1:τ)) +
τ∑

t=1

gt(wt)

into the dynamical structure of ψ(x , ·) ?

5 / 17

Optimization Problem

Objective
Given a chain of computations ψ, convex functions h hi , gt and xi ∈ Rd0

min
w1:τ

1
n

n∑
i=1

hi (ψ(xi ,w1:τ)) +
τ∑

t=1

gt(wt)

Questions
How can we decompose (i) gradients, (ii) Gauss-Newton, (iii) Newton, ((iv)
risk-sensitive gradients), (v) proximal points oracles for

f (w1:τ) = h(ψ(x ,w1:τ)) +
τ∑

t=1

gt(wt)

into the dynamical structure of ψ(x , ·) ?

5 / 17

Optimization Problem

Objective
Given a chain of computations ψ, convex functions h hi , gt and xi ∈ Rd0

min
w1:τ

1
n

n∑
i=1

hi (ψ(xi ,w1:τ)) +
τ∑

t=1

gt(wt)

Questions
How can we decompose (i) gradients, (ii) Gauss-Newton, (iii) Newton, ((iv)
risk-sensitive gradients), (v) proximal points oracles for

f (w1:τ) = h(ψ(x ,w1:τ)) +
τ∑

t=1

gt(wt)

into the dynamical structure of ψ(x , ·) ?

5 / 17

Oracles Decomposition

Approach
Oracles are defined by subproblems
1. Decompose theoretically the sub-problems into the chain of computations
2. Get an efficient implementation of the subproblems

Model minimization oracles
Given a model of f at x s.t. mf (y ; x) ≈ f (y) (e.g. |mf (y ; x)−f (y)| ≤ L‖x−y‖22)
Oracle defined as (with γ stepsize)

Of (x) = argmin
y

mf (x + y ; x) + 1
2γ ‖y‖

2
2

Examples:

1. Gradient mf = `f (linear approx.)
2. For f = h ◦ ψ + g , Gauss-Newton mf = qh ◦ `ψ + qg (mixed approx.)
3. Newton mf = qf (quadratic approx.)

6 / 17

Oracles Decomposition

Approach
Oracles are defined by subproblems
1. Decompose theoretically the sub-problems into the chain of computations
2. Get an efficient implementation of the subproblems

Model minimization oracles
Given a model of f at x s.t. mf (y ; x) ≈ f (y) (e.g. |mf (y ; x)−f (y)| ≤ L‖x−y‖22)
Oracle defined as (with γ stepsize)

Of (x) = argmin
y

mf (x + y ; x) + 1
2γ ‖y‖

2
2

Examples:

1. Gradient mf = `f (linear approx.)
2. For f = h ◦ ψ + g , Gauss-Newton mf = qh ◦ `ψ + qg (mixed approx.)
3. Newton mf = qf (quadratic approx.)

6 / 17

Gradient Oracle

Gradient oracle decomposition
For

f (w1:τ) = h(ψ(x ,w1:τ)) +
τ∑

t=1

gt(wt) with
ψ(x ,w1:τ) = xτ
xt+1 = φt(xt ,wt)
x0 = x

gradient is given by −γ∇f (w1:τ) = v1:τ
∗ solution of

7 / 17

Gradient Oracle

Gradient oracle decomposition
For

f (w1:τ) = h(ψ(x ,w1:τ)) +
τ∑

t=1

gt(wt) with
ψ(x ,w1:τ) = xτ
xt+1 = φt(xt ,wt)
x0 = x

gradient is given by −γ∇f (w1:τ) = v1:τ
∗ solution of

min
v1,...,vτ
y0,...,yτ

linearization of the objective︷ ︸︸ ︷
∇h(xτ)>yτ +

linearization of the penalty︷ ︸︸ ︷
τ∑

t=1

∇gt(wt)>vt + 1
2γ

τ∑
t=1

‖vt‖22

subject to yt = ∇xφt(wt , xt−1)>yt−1 +∇wφt(wt , xt−1)>vt︸ ︷︷ ︸
linearization of the computations

, y0 = 0

7 / 17

Gradient Oracle

Gradient oracle decomposition
For

f (w1:τ) = h(ψ(x ,w1:τ)) +
τ∑

t=1

gt(wt) with
ψ(x ,w1:τ) = xτ
xt+1 = φt(xt ,wt)
x0 = x

gradient is given by −γ∇f (w1:τ) = v1:τ
∗ solution of

min
v1,...,vτ
y0,...,yτ

h̃τ>yτ +
τ∑

t=1

g̃t
>vt + 1

2γ ‖vt‖22

subject to yt = Φx
t
>yt−1 + Φw

t
>vt , y0 = 0

Quadratic problem with linear dynamical constraints

7 / 17

Dual Viewpoint

With dual variables λt ,

min
v1,...,vτ
y1,...,yτ

sup
λ1,...,λτ

h̃>τ yτ +
τ∑

t=1

g̃>t vt+ 1
2γ ‖vt‖22 +

τ∑
t=1

λt
>(Φx

t
>yt−1 + Φw

t
>vt − yt) + λ0

>y0

Swapping miny0,...,yτ and supλ1,...,λτ , after minimization in yt , we get

min
w1,...,wτ

sup
λ0,...,λτ

τ∑
t=1

(g̃t + Φw
t λt)>vt + 1

2γ ‖vt‖22

subject to λτ = h̃τ , λt−1 = Φx
t λt (1)

Gradient given by −γ∇f (w1:τ) = v1:τ
∗ with

v∗t = −γ(g̃t + Φw
t λt) (2)

Algorithm (Automatic-Differentiation)

1. Compute dual variables by λt by (1)
2. Output gradient by (2)

8 / 17

Dynamic Programming Viewpoint

Define optimal cost starting from ŷt at time t,

cost(ŷt−1) = min
vt ,...,vτ

yt−1,...yτ

h̃>τ yτ +
τ∑

s=t

g̃>s vs + 1
2γ ‖vs‖22

subject to ys = As
>ys−1 + Bs

>vs , yt−1 = ŷt−1 for s = t, . . . , τ

Can show recursively

cost(yt) = λt
>yt−1

where λτ = h̃τ , λt−1 = Φx
t λt

Optimal controls

v∗t = argmin
vt

g̃>t vt + 1
2γ ‖vt‖22 + cost(Φx

s
>yt−1 + Φw

t
>vt)

= −γ(g̃t + Φw
t λt)

9 / 17

Dynamic Programming Viewpoint

Define optimal cost starting from ŷt at time t,

cost(ŷt−1) = min
vt

g̃>t vt + 1
2γ ‖vt‖22 + cost(Φx

s
>yt−1 + Φw

t
>vt)

Can show recursively

cost(yt) = λt
>yt−1

where λτ = h̃τ , λt−1 = Φx
t λt

Optimal controls

v∗t = argmin
vt

g̃>t vt + 1
2γ ‖vt‖22 + cost(Φx

s
>yt−1 + Φw

t
>vt)

= −γ(g̃t + Φw
t λt)

9 / 17

Dynamic Programming Viewpoint

Define optimal cost starting from ŷt at time t,

cost(ŷt−1) = min
vt

g̃>t vt + 1
2γ ‖vt‖22 + cost(Φx

s
>yt−1 + Φw

t
>vt)

Can show recursively

cost(yt) = λt
>yt−1

where λτ = h̃τ , λt−1 = Φx
t λt

Optimal controls

v∗t = argmin
vt

g̃>t vt + 1
2γ ‖vt‖22 + cost(Φx

s
>yt−1 + Φw

t
>vt)

= −γ(g̃t + Φw
t λt)

9 / 17

Automatic-Differentiation

Viewpoints
1. Traditional : chain rule, Lagrangian trick, . . .
2. Dual : (i) Highlight “co-states" λt as dual variables of the linearized pb,

(ii) Useful to generalize to e.g. proximal points
3. Dynamic Programming: Can tackle gradients, Gauss-Newton, Newton

Consequences

1. Baur-Strassen’s theorem (?),

“computing a derivative is up to a constant factor
more expansive than computing the function"

2. Access to, by machine learning libraries (e.g. Pytorch (?)),

λ→ ∇ψ(w1:τ , x)λ

We do not store ∇ψ(w1:τ , x) but have access to the linear form
by only storing (∇φt)τt=1

10 / 17

Automatic differentiation

∇f (w1:τ) = ∇w1:τψ(x ,w1:τ)∇h(xτ)

φ1

Φx
1

Φw
1

φ2

Φx
1

Φw
2

φ3

Φx
3

Φw
3

w1:τ

w1 w2 w3

x x1 x2 ψ(x ,w1:τ)

λτ = h̃τλ2λ1

∇w1ψ(x ,w1:τ)h̃τ ∇w2ψ(x ,w1:τ)h̃τ ∇w3ψ(x ,w1:τ)h̃τ

∇w1:τψ(x ,w1:τ)h̃τ

ψ

11 / 17

Gradient, Gauss-Newton, Newton by Dynamic Programming

On a point w1:τ ∈ Rp, given a step-size γ, for an objective of the form h ◦ψ+ g ,

Gradient
A gradient step is defined as

w+
1:τ = argmin

v1:τ

`h◦ψ(v1:τ ; w1:τ) + `g (v1:τ ; w1:τ) + 1
2γ ‖v1:τ − w1:τ‖22,

Gauss-Newton
A (regularized generalized) Gauss-Newton step is defined as

w+
1:τ = argmin

v1:τ

qh(`ψ(v1:τ ; w1:τ);ψ(w1:τ)) + qg (v1:τ ; w1:τ) + 1
2γ ‖v1:τ − w1:τ‖22,

Newton
A (regularized) Newton step is defined as

w+
1:τ = argmin

v1:τ

qh◦ψ(v1:τ ; w1:τ) + qg (v1:τ ; w1:τ) + 1
2γ ‖v1:τ − w1:τ‖22.

12 / 17

Gradient, Gauss-Newton, Newton by Dynamic Programming

Proposition ((???))
Gradient, Gauss-Newton, Newton steps amount to solve

min
v1,...,vτ
y0,...,yτ

τ∑
t=1

1
2y>t Ptyt + p>t yt + y>t−1Rtvt + 1

2v>t Qtvt + q>t vt + 1
2γ ‖vt‖22

subject to yt = Φx
t
>tyt−1 + Φw

t
>vt for t ∈ {1, . . . , τ},

y0 = 0,

Example
For Newton steps, defining

λτ = ∇h(ψ(w (k))), λt−1 = ∇xt−1φt(wt , xt−1)λt for t ∈ {1, . . . , τ},

we have

Pτ = ∇2h(ψ(w (k))),Pt−1 = ∇2
xt−1xt−1φt(wt , xt−1)[·, ·, λt] for t ∈ {1, . . . , τ},

Rt = ∇2
xt−1wtφt(wt , xt−1)[·, ·, λt],Qt = ∇2gt(wt) +∇2

wt wtφt(wt , xt−1)[·, ·, λt].

13 / 17

Implementation of Gauss-Newton by Automatic Differentiation

Dual of Gauss-Newton step

1. Formulation

min
λ

q̃?h (λ) + q̃?g (−∇ψ(w1:τ , x)λ),

where q̃h(y) = qh(ψ(w1:τ) + y ;ψ(w1:τ)),
q̃g (z) = qg (w1:τ + z; w1:τ) + ‖z‖22/2

2. Gauss-Newton-step reads z (k+1) = w1:τ +∇q̃?g (−∇ψ(w1:τ)λ∗)
3. Can be solved by 2q + 1 calls to an automatic differentiation procedure

where q is the output dimension of ψ.

14 / 17

Gradient, Gauss-Newton, Newton by Dynamic Programming

Consequences

1. All those steps are linear quadratic control problems
2. Can be solved by dynamic programming with a linear complexity w.r.t. τ

Implementation
1. Compute in a backward pass, cost-to-go functions as quadratics,
2. Store solutions at each step as v∗t (yt−1) = Ktyt−1 + kt

3. Solve subproblems in a forward pass by,

y0 = 0
v∗t = Ktyt−1 + kt

yt = Φx
t
>yt−1 + Φw

t
>wt for t = 1, . . . τ

15 / 17

Actual Algorithms in Non-Linear Control

Differential Dynamic Programming (?)

1. Idea: Back-propagate quadratic approximations of Bellman’s equation

cost(xt−1) = min
yt

gt(wt) + cost(φt(xt ,wt))

2. Resulting cost-to-go functions are similar to the ones for Newton’s method
but the forward pass reads

y0 = x̂0
v∗t = Ktyt−1 + kt

yt = φt(yt−1,wt) for t = 1, . . . τ

Analysis ?

1. Can be analyzed as perturbed Newton (?)

2. Yet, better behavior in practice (?)

3. Can be seen as a recursive projected method on states (?)

16 / 17

Smoothness Considerations

Proposition (Automatic smoothness computations)
Assume computations φt to be `φt Lipschitz continuous and Lφt smooth,
1. Upper bound on Lipschitz-continuity of ψ is given by `ψ = `τ , where

`t = `φt + `t−1`φt , `0 = 0.

2. Upper-bound of Smoothness of ψ is given by Lψ = Lτ , where

Lt = Lt−1`φt + Lφt (1 + `t−1)2, L0 = 0.

Automatic smoothness computations
Generalizes to smoothness estim. of deep networks on balls (?)

Get automatic smoothness comparisons of deep networks
Can be used to derive optimization convergence rates

17 / 17

