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Machine Learning Pipeline

Machine learning pipeline

» Collect and preprocess data
e.g. collect images, crop, center, normalize

» Design model for given task
e.g. linear classifier with logistic loss

» Optimize your model,
i.e., get parameters that minimize the error of the model
e.g. using gradient descent on error of your model f

Bottleneck

» How to compute the gradients ?
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Given sample (x,y) € R? x {—1,1} want to compute gradient of

f:w — log(1+4 exp(—yw ' x))

Solutions to compute the gradient:

1. Write down analytic form

_ —yX
Vi =13 exp(—yw " x)

Pros: Exact formulation, independent of the function evaluation
Cons: Need access to the analytic form of the function
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Differentiation Methods

Binary classification
Given sample (x,y) € R? x {—1,1} wants to compute gradient of

f:w — log(1+4 exp(—yw ' x))

Solutions to compute the gradient:
1. Write down analytic form

2. Use finite approximation

f(w+dd) — f(w)
4]

Pros: Only needs access to the function evaluation of f
Cons: Inexact gradient

Vi(w)'d~ for0< <1
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Differentiation Methods

Binary classification
Given sample (x,y) € RY x {—1,1} wants to compute gradient of

f:w — log(l+ exp(—yw ' x))

Solutions to compute the gradient:
1. Write down analytic form
2. Use finite approximation

3. Decompose f as successive compositions, use the chain-rule

Automatic differentiation

Pros: - Only needs access to the function evaluation by compositions
- Exact gradient
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Simple Derivative Computation

Consider RY = R, a sample (x,y) = (3.5,1), s.t.
f:wy — log(l+ exp(—3.5wp))

Function decomposition vy input, vj successive evaluations

® -
f:wy— g2og1ogo(wo)
where gp:vg — —3.5v
@ =1+ exp(w1) g1:vi— 1+4+exp(vr)
8 1 v2 — log(w2)
@ = log(v2) = f(wo)
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Chain Rule

Chain rule Given f(wp) = g2 0 g1 © go(wp),
f'(wo) = go(vo) 81(v1) g5(v2)

where vo = wp, vi = go(w), voa = g1(v1)
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Chain Rule

Chain rule Given f(wp) = g2 0 g1 © go(wp),
f'(wo) = go(vo) 81(v1) g5(v2)

where vo = wo, vi = go(vo), v2 = g1(v1)
Only need derivatives of elementary functions

Elementary functions
> v = av, v — vk, v—1/v
» v — exp(v), v — log(v), v — cos(v), v — sin(v)

| S
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Forward-Backward Computation

Idea Recursive computations, using dwy = Jdvp,

f’(Wo):ﬁZ%g:%@ﬁ:%%%ﬁ
Ovg Ovg Ovi  Ovp Ovi Ovo  Ovg Ovi Ovo O3
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Forward-Backward Computation
Idea Recursive computations, using dwy = Jdvp,

Fllwg) = 25 20w OF 0w 0wy OF 0wy Ovy Ovs OF
C)Vo aVO 8V1 8V0 8v1 aVQ aVO 8v1 aVQ 8V3

Algorithm
» Compute = M = gi(vk) in a forward pass

> Compute ‘— in a backward pass using

Of Qv Of
8Vk N avk 8Vk+1
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Simple Derivative Computation
f(wo) = log(1 + exp(—3.5w)), Vk+1 = 8k(vk)

Vk avk/avk,l

~

©8o
—3.5y —-3.5

&

1+ exp(v1) exp(v1)

(D(®
iy

~

O
B

log(v2) 1/va

exexexe

)\k = 8f/8vk

8f/8vk

—3.5exp(v1)/v

exp(vi)/va

1/vy
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Forward-Backward Computation

Vi1
Forward pass B,

» Compute vy = go(vo) gl(Vl) = g(v2)
» Store d"l go( 0), av1 = gi(v )» 3V2 = g(n2)
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Forward-Backward Computation

Forward pass d(‘;f/“
» Compute vy = go(vo) gl(Vl) = g(v2)
» Store d"l = g5(w), 5 5 = g1(v 1), 3 5 = 8(v2)

of
Backward pass e

of

> Initialize G =1
v3
» For k =2,. 0
_ Oviy1  Of
> ComPUte bT - 8vk i)vk+1
» Output f'(wy) = g‘fo
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Automatic Differentiation Toolboxes

From theory to practice
» Good to know how automatic differentiation works
» Hard to implement for generic decomposition or device

» Use publicly available libraries such as
— PyTorch, TensorFlow, Theano ...

Here brief introduction to PyTorch

17 /38



Automatic Differentiation in PyTorch

from torch import rand, log, exp

# Instantiate variable
w0 = rand (1)

# Flag to record any computation involving w0
w0.requires_grad = True

# Compute logistic loss on (x,y) = (3.5, 1)
out = log(l4+exp(—3.5%xw0))

# Backpropagate gradients of any input involved in out
out.backward ()

# Derivative is recorded in the variable
print (w0.grad)
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Automatic Differentiation Toolboxes

Features
» Vast library of elementary vectorial functions

» Easy construction of complex models by stacking operations
» Implemented in GPUs
— fast back-propagation of convolution operations
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Automatic Differentiation Toolboxes

Features
» Vast library of elementary vectorial functions

» Easy construction of complex models by stacking operations
» Implemented in GPUs
— fast back-propagation of convolution operations

Main message

Can compute derivatives of any computations
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Gradient Computation

Same forward-backward algorithm, replaces scalar by vectors,

n
f(wo) = Z log(1 + exp(—yiwg x;)), wo € RY, x; € RY, y; € {~1,1}
i=1

21/38



Gradient Computation

Same forward-backward algorithm, replaces scalar by vectors,

n
f(wo) = Z log(1 + exp(—yiwg x;)), wo € RY, x; € RY, y; € {~1,1}
i=1

f(wo) = g3 0 &2 0 g1 ° go(wo)
where, denoting X = (y1x1,...,ynxn) ', 1o =(1,...,1),

vi = go(vo) = —Xw vz = go(v2) = log(v2)
vo = g1(v1) = 1, +exp(v1) v = g3(v3) =1, v3
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Gradient Computation
Chain rule

f(wo) = g3 0 &2 0 g1 © go(wo)
Vif(wo) = Vgo(vo)Vegi(vi)Vea(v2)Vgs(vs)

where - g», g1, go are multivariate functions, e.g., go : R — R”
- g3 is real-valued, i.e,. g3 : R" - R
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Gradient Computation
Chain rule

f(wo) = g3 0 &2 0 g1 © go(wo)
Vif(wo) = Vgo(vo)Vegi(vi)Vea(v2)Vgs(vs)

where - g», g1, go are multivariate functions, e.g., go : R — R”
- g3 is real-valued, i.e,. g3 : R" - R

Consequence: Vgy(v), Vgi(vi), Vga(v2) are now matrices,
Vgs(v3) is a vector

Backward pass V,, f (vectors)
» Initialize V »f = Vg3(V3) (first step amounts to compute a vector)
» For k=1,...0,
» Compute V, f =V, v 1V,

(iterations are matrix-vector products)

» Output VF(wp) =V, f
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PyTorch Implementation

from torch import rand, log, exp

20

# Create data n =100, d
X = rand (100, 20)

w0 = rand(20); w0.requires_grad=True

# Compute logistic loss
out = sum(log(14+ exp(—X.mv(w0))))

# Backpropagate gradients
out.backward ()

print (w0.grad)
print (w0.grad.shape) # get 20 dimensional vector
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Deep Neural Network

Inp
X

ut

Linear

operation matrix-vector product, convolution, ...

X¢-1 Wexeo o(Wexe-1)| xp Output
o w, [ —] 4 > o> %,
: Layer &
: sigmoid hyperbolic tangent
Non-linear
activation

o(x)=(1+exp(=x)~! o(x)=(exp(2x)—1)/(exp(2x)+1)
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Deep Neural Network

Deep neural network structure
A deep neural network transforms an input x = xp using

Xy = O'Z(Wg . Xg_l) (Layer E)

where oy is the activation function, W, are the weights of the layer

26
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Deep Neural Network

Deep neural network structure
A deep neural network transforms an input x = xp using

Xy = O’g(Wg . Xg_l) (Layer E)

where oy is the activation function, W, are the weights of the layer

Objective

1= i
min - (W) =
W=(W0I,...,WL) n ; ( )

1 Z F (Y0 (W, W)
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Deep Neural Network

Deep neural network structure
A deep neural network transforms an input x = xp using

Xy = O'Z(Wg . Xg_l) (Layer f)

where oy is the activation function, W, are the weights of the layer

Objective
1 & 1 o
. N MY = ST (v Do w
WZ(VnJOI,I:]..,WL) n; ( ) n; (y 7X[_ ( 0, R L))

with stochastic gradient descent

W+ W —yVFO (W)

26
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Gradient for Deep Neural Network

Binary classification with one hidden layer on R
Given sample (x,y) = (3.5,1) wants to compute gradient of

f: (wo,wi) = (y — wy tanh(xwp))? = (1 — wy tanh(3.5up))?
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Binary classification with one hidden layer on R
Given sample (x,y) = (3.5,1) wants to compute gradient of

f: (wo,wi) = (y — wy tanh(xwp))? = (1 — wy tanh(3.5up))?

oF _of om
@ =" 8w0 - 8v1 8W0
oF _ o om,
° = tanh(3.5vp) owy  Ovo Owy
® -
® o
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Binary classification with one hidden layer on R
Given sample (x,y) = (3.5,1) wants to compute gradient of

f: (wo,wi) = (y — wy tanh(xwp))? = (1 — wy tanh(3.5up))?

oF _ of on
@ =W 6w0 a 8v1 8W0
oF _ of
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Gradient for Deep Neural Network

Binary classification with one hidden layer on R
Given sample (x,y) = (3.5,1) wants to compute gradient of

f: (wo,wi) = (y — wy tanh(xwp))? = (1 — wy tanh(3.5up))?

o _ofom
@ =W 6w0 a 8v1 8W0
o _ of om
° = tanh(3.5v) ow;  Ovo Oy
— Use same computations 5)—‘2
@ = Wi for all layers '
— At layer ¢, output
@ =(1-w) of  Of dv

owg — Ov dwg
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PyTorch Implementation

from torch import rand, tanh

# Instantiate weights
w0 = rand(1); wl = rand (1)

# Flag to record any computation involving w0 or wl
w0.requires_grad = True; wl.requires_grad = True

# Compute square loss of 1—layer DNN with tanh
activation on (x,y)=(3.5,1)

out = tanh(3.5xw0)

out = wlxout

out = (1 — out)*™2

# Backpropagate gradients of any input involved in out
out.backward ()

# Gradients are recorded in the variables
print (w0.grad)
print(wl.grad)
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Summary

Automatic differentiation procedure
» Uses decomposition of functions in simple blocks
» Forward pass: Computes function & successive derivatives

» Backward pass: Back-propagates derivative of the objective
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Summary

Automatic differentiation procedure
» Uses decomposition of functions in simple blocks
» Forward pass: Computes function & successive derivatives

» Backward pass: Back-propagates derivative of the objective

Automatic differentiation toolbox

» Highly efficient and versatile libraries available

Advanced Differentiation
» Use auto. diff. toolbox to compute hessians, jacobians, ...

» Can differentiate through any model, even combinatorial
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Extensions

Not covered

» Forward mode of automatic-differentiation, automatic
differentiation on complex graph of computations
— see e.g. [Griewank and Walther, 2008]

» Back-propagating sub-gradients for e.g. RelLU activation
— Is auto. diff. well defined 7 see [Kakade and Lee, 2018]

» Second-order methods and optimization tricks
— Read [LeCun et al, 1998]
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Computing Second Order Derivative

Until here 'only’ gradient computations
Yet derivative of any computation available
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Computing Second Order Derivative

Until here 'only’ gradient computations
Yet derivative of any computation available

Question: How to get second order derivative ?

Answer: Back-propagate through gradient computations

o0*f 0 of

02w Ow dw
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Computing Second Order Derivative

from torch import rand, tanh
from torch.autograd import grad

x=rand (1); wO=rand(1); wO.requires_grad = True;
out = tanh(x*w0)

# Flag to record also computations of the gradient
out.backward(create_graph=True)

# Back—propagate through the computations of the gradient
hess = grad(outputs=w0.grad, inputs=w0)
print (hess)
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Computing Gradients of Multivariate Functions

Functions considered

» Real-valued functions f : RY — R

» Arithmetic operations are matrix-vector products with cost d?
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Computing Gradients of Multivariate Functions

Functions considered

» Real-valued functions f : RY — R

» Arithmetic operations are matrix-vector products with cost d?
Now Multivariate func. f : R? — RP, derivative Vf(w) € RI*P

How to compute gradient ?

1. Same forward-backward as before
— Arithmetic operations are matrix-matrix products, cost pd?

2. Do not compute multi-variate gradient if you only need
z:— Vf(w)z for z € RP

— Amounts to compute gradient of w :— z' f(w)
— Can solve Vf(w)z = v only by calls to Vf(w)z
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Computing Gradients of Multivariate Functions

from torch import rand, tanh

X=rand (10, 4); wO=rand(4); wO0.requires_grad=True
out = tanh(X.mv(w0))

z = rand (10)

# Add z into the backward operation to convert
# the output to z'f(w)

out.backward(create_graph=True, gradient=z)

print (w0.grad)
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Back-propagating through Optimization Procedure

Combinatorial objectives

» Machine learning can involve combinatorial problems
ex: object segmentation, sentence alignment
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Back-propagating through Optimization Procedure

Combinatorial objectives

» Machine learning can involve combinatorial problems
ex: object segmentation, sentence alignment

» What if features are learned during the optimization ?

» Back-propagates through the optimization iterations
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Back-propagating through Optimization Procedure

Structured Prediction see e.g. [Pillutla et al, 2018]

» Complex outputs y such as sequences or images
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» Complex outputs y such as sequences or images
» Prediction of input x given by inference
y =max¢(x,y; w)
y
where ¢(x, y; w) is the score of label y for input x
— Combinatorial problem solved by dynamic programming

» Given loss on inputs £(y,y), surrogate objective reads
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Back-propagating through Optimization Procedure

Structured Prediction see e.g. [Pillutla et al, 2018]

» Complex outputs y such as sequences or images
» Prediction of input x given by inference

y = maxo(x, 7 w)
y

where ¢(x, y; w) is the score of label y for input x
— Combinatorial problem solved by dynamic programming

» Given loss on inputs £(y,y), surrogate objective reads
Fw) = max{(x, 7 w) + £(7,y)} — dx.yiw)

» (Sub)-gradient given by back-propagating through the max,
i.e., through the dynamic programming procedure
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