Automatic Differentiation

Guest lecture, DATA 558, Spring 2019 (Prof. Zaid Harchaoui instructor)

Vincent Roulet

Postdoc in Department of Statistics University of Washington

Machine learning pipeline

► Collect and preprocess data

e.g. collect images, crop, center, normalize

Machine learning pipeline

- Collect and preprocess data
 - e.g. collect images, crop, center, normalize
- Design model for given task
 - e.g. linear classifier with logistic loss

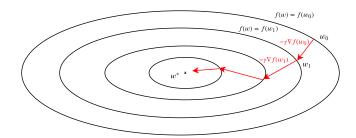
Machine learning pipeline

- Collect and preprocess data
 - e.g. collect images, crop, center, normalize
- Design model for given task
 - e.g. linear classifier with logistic loss
- Optimize your model,
 - i.e., get parameters that minimize the error of the model
 - e.g. using gradient descent on error f of your model

Machine learning pipeline

- Collect and preprocess data
 - e.g. collect images, crop, center, normalize
- Design model for given task
 e.g. linear classifier with logistic loss
- Optimize your model,
 i.e., get parameters that minimize the error of the model
 e.g. using gradient descent on error f of your model

$$w \leftarrow w - \gamma \nabla f(w)$$



Machine learning pipeline

- Collect and preprocess data
 e.g. collect images, crop, center, normalize
- Design model for given task
 e.g. linear classifier with logistic loss
- ► Optimize your model, i.e., get parameters that minimize the error of the model e.g. using gradient descent on error of your model f

Bottleneck

How to compute the gradients ?

Outline

Differentiation Methods

Simple Derivative Computation

Automatic Differentiation Toolbox

Gradient Computation

Gradient for Deep Neural Network

Advanced Derivatives

Outline

Differentiation Methods

Simple Derivative Computation

Automatic Differentiation Toolbox

Gradient Computation

Gradient for Deep Neural Network

Advanced Derivatives

Binary classification

Given sample $(x,y) \in \mathbb{R}^d \times \{-1,1\}$ want to compute gradient of

$$f: w \to \log(1 + \exp(-yw^{\top}x))$$

Binary classification

Given sample $(x,y) \in \mathbb{R}^d imes \{-1,1\}$ want to compute gradient of

$$f: w \to \log(1 + \exp(-yw^{\top}x))$$

Solutions to compute the gradient:

1. Write down analytic form

$$\nabla f(w) = \frac{-yx}{1 + \exp(-yw^\top x)}$$

Binary classification

Given sample $(x,y) \in \mathbb{R}^d \times \{-1,1\}$ want to compute gradient of

$$f: w \to \log(1 + \exp(-yw^{\top}x))$$

Solutions to compute the gradient:

1. Write down analytic form

$$\nabla f(w) = \frac{-yx}{1 + \exp(-yw^{\top}x)}$$

Pros: Exact formulation, independent of the function evaluation

Cons: Need access to the analytic form of the function

Binary classification

Given sample $(x,y) \in \mathbb{R}^d imes \{-1,1\}$ wants to compute gradient of

$$f: w \to \log(1 + \exp(-yw^{\top}x))$$

Solutions to compute the gradient:

- 1. Write down analytic form
- 2. Use finite approximation

$$abla f(w)^{ op} d pprox rac{f(w + \delta d) - f(w)}{\delta} \quad ext{for } 0 < \delta \ll 1$$

Binary classification

Given sample $(x,y) \in \mathbb{R}^d imes \{-1,1\}$ wants to compute gradient of

$$f: w \to \log(1 + \exp(-yw^{\top}x))$$

Solutions to compute the gradient:

- 1. Write down analytic form
- 2. Use finite approximation

$$abla f(w)^{ op} d pprox rac{f(w + \delta d) - f(w)}{\delta} \quad ext{for } 0 < \delta \ll 1$$

Pros: Only needs access to the function evaluation of f

Cons: Inexact gradient

Binary classification

Given sample $(x,y) \in \mathbb{R}^d \times \{-1,1\}$ wants to compute gradient of

$$f: w \to \log(1 + \exp(-yw^{\top}x))$$

Solutions to compute the gradient:

- 1. Write down analytic form
- 2. Use finite approximation
- 3. Decompose f as successive compositions, use the chain-rule

Binary classification

Given sample $(x,y) \in \mathbb{R}^d imes \{-1,1\}$ wants to compute gradient of

$$f: w \to \log(1 + \exp(-yw^{\top}x))$$

Solutions to compute the gradient:

- 1. Write down analytic form
- 2. Use finite approximation
- 3. Decompose f as successive compositions, use the chain-rule

Automatic differentiation

Binary classification

Given sample $(x,y) \in \mathbb{R}^d imes \{-1,1\}$ wants to compute gradient of

$$f: w \to \log(1 + \exp(-yw^{\top}x))$$

Solutions to compute the gradient:

- 1. Write down analytic form
- 2. Use finite approximation
- 3. Decompose f as successive compositions, use the chain-rule

Automatic differentiation

Pros: - Only needs access to the function evaluation by compositions

- Exact gradient

Outline

Differentiation Methods

Simple Derivative Computation

Automatic Differentiation Toolbox

Gradient Computation

Gradient for Deep Neural Network

Advanced Derivatives

Consider
$$\mathbb{R}^d=\mathbb{R}$$
, a sample $(x,y)=(3.5,1)$, s.t.
$$f:w_0\to \log(1+\exp(-3.5w_0))$$

Consider
$$\mathbb{R}^d = \mathbb{R}$$
, a sample $(x, y) = (3.5, 1)$, s.t.

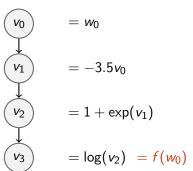
$$f: w_0 \to \log(1 + \exp(-3.5w_0))$$

Consider $\mathbb{R}^d = \mathbb{R}$, a sample (x, y) = (3.5, 1), s.t.

$$f: w_0 \to \log(1 + \exp(-3.5w_0))$$

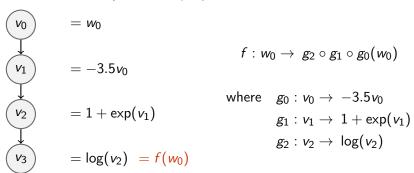
Consider $\mathbb{R}^d = \mathbb{R}$, a sample (x, y) = (3.5, 1), s.t.

$$f: w_0 \to \log(1 + \exp(-3.5w_0))$$



Consider
$$\mathbb{R}^d = \mathbb{R}$$
, a sample $(x, y) = (3.5, 1)$, s.t.

$$f: w_0 \to \log(1 + \exp(-3.5w_0))$$



Chain Rule

Chain rule Given
$$f(w_0)=g_2\circ g_1\circ g_0(w_0),$$

$$f'(w_0)=g_0'(v_0)\,g_1'(v_1)\,g_2'(v_2)$$
 where $v_0=w_0,v_1=g_0(v_0),v_2=g_1(v_1)$

Chain Rule

Chain rule Given
$$f(w_0)=g_2\circ g_1\circ g_0(w_0),$$

$$f'(w_0)=g_0'(v_0)\,g_1'(v_1)\,g_2'(v_2)$$
 where $v_0=w_0,\,v_1=g_0(v_0),\,v_2=g_1(v_1)$

Only need derivatives of elementary functions

Chain Rule

Chain rule Given
$$f(w_0)=g_2\circ g_1\circ g_0(w_0),$$

$$f'(w_0)=g_0'(v_0)\,g_1'(v_1)\,g_2'(v_2)$$
 where $v_0=w_0,\,v_1=g_0(v_0),\,v_2=g_1(v_1)$

Only need derivatives of elementary functions

Elementary functions

- \triangleright $v \rightarrow av$, $v \rightarrow v^k$, $v \rightarrow 1/v$
- $ightharpoonup v
 ightarrow \exp(v)$, $v
 ightharpoonup \log(v)$, $v
 ightharpoonup \sin(v)$

Forward-Backward Computation

Idea Recursive computations, using $\partial w_0 = \partial v_0$,

$$f'(w_0) = \frac{\partial f}{\partial v_0} = \frac{\partial v_1}{\partial v_0} \frac{\partial f}{\partial v_1} = \frac{\partial v_1}{\partial v_0} \frac{\partial v_2}{\partial v_1} \frac{\partial f}{\partial v_2} = \frac{\partial v_1}{\partial v_0} \frac{\partial v_2}{\partial v_1} \frac{\partial v_3}{\partial v_2} \frac{\partial f}{\partial v_3}$$

Forward-Backward Computation

Idea Recursive computations, using $\partial w_0 = \partial v_0$,

$$f'(w_0) = \frac{\partial f}{\partial v_0} = \frac{\partial v_1}{\partial v_0} \frac{\partial f}{\partial v_1} = \frac{\partial v_1}{\partial v_0} \frac{\partial v_2}{\partial v_1} \frac{\partial f}{\partial v_2} = \frac{\partial v_1}{\partial v_0} \frac{\partial v_2}{\partial v_1} \frac{\partial v_3}{\partial v_2} \frac{\partial f}{\partial v_3}$$

Algorithm

- ► Compute $\frac{\partial v_{k+1}}{\partial v_k} = g'_k(v_k)$ in a forward pass
- ► Compute $\frac{\partial f}{\partial v_k}$ in a *backward* pass using

$$\frac{\partial f}{\partial v_k} = \frac{\partial v_{k+1}}{\partial v_k} \frac{\partial f}{\partial v_{k+1}}$$

$$f(w_0) = \log(1 + \exp(-3.5w_0)), \qquad v_{k+1} = g_k(v_k) \qquad \lambda_k = \partial f/\partial v_k$$

 $1 + \exp(v_1)$

 $log(v_2)$

 $\circ g_1$

$$f(w_0) = \log(1 + \exp(-3.5w_0)), \qquad v_{k+1} = g_k(v_k) \qquad \lambda_k = \partial f/\partial v_k$$
 v_k v_0 v_0 v_0

$$f(w_0) = \log(1 + \exp(-3.5w_0)), \qquad v_{k+1} = g_k(v_k) \qquad \lambda_k = \partial f/\partial v_k$$

$$v_k \qquad \partial v_k/\partial v_{k-1}$$

$$v_0 \qquad w_0 \qquad 1$$

$$v_1 \qquad -3.5v_0 \qquad -3.5$$

$$v_2 \qquad 1 + \exp(v_1) \qquad \exp(v_1)$$

$$v_3 \qquad \log(v_2) \qquad 1/v_2$$

$$f(w_0) = \log(1 + \exp(-3.5w_0)), \qquad v_{k+1} = g_k(v_k) \qquad \lambda_k = \partial f/\partial v_k$$

$$v_k \qquad \partial v_k/\partial v_{k-1} \qquad \qquad \partial f/\partial v_k$$

$$v_0 \qquad w_0 \qquad \qquad 1 \qquad \qquad \lambda_0 \qquad \qquad \lambda_g'_0$$

$$v_1 \qquad -3.5v_0 \qquad \qquad -3.5 \qquad \qquad \lambda_1 \qquad \qquad \lambda_g'_1$$

$$v_2 \qquad \qquad 1 + \exp(v_1) \qquad \exp(v_1) \qquad \qquad \lambda_2 \qquad \qquad \lambda_2$$

$$v_3 \qquad \log(v_2) \qquad 1/v_2 \qquad \qquad \lambda_3$$

$$f(w_0) = \log(1 + \exp(-3.5w_0)), \qquad v_{k+1} = g_k(v_k) \qquad \lambda_k = \partial f/\partial v_k$$

$$v_k \qquad \partial v_k/\partial v_{k-1} \qquad \qquad \partial f/\partial v_k$$

$$v_0 \qquad w_0 \qquad 1 \qquad \qquad \lambda_0 \qquad \qquad \lambda_g'_0$$

$$v_1 \qquad -3.5v_0 \qquad -3.5 \qquad \qquad \lambda_1 \qquad \qquad \lambda_g'_1$$

$$v_2 \qquad 1 + \exp(v_1) \qquad \exp(v_1) \qquad \qquad \lambda_2 \qquad \qquad \lambda_2 \qquad \qquad \lambda_2$$

$$v_3 \qquad \log(v_2) \qquad 1/v_2 \qquad \qquad \lambda_3 \qquad 1$$

$$f(w_0) = \log(1 + \exp(-3.5w_0)), \qquad v_{k+1} = g_k(v_k) \qquad \lambda_k = \partial f/\partial v_k$$

$$v_k \qquad \partial v_k/\partial v_{k-1} \qquad \partial f/\partial v_k$$

$$v_0 \qquad w_0 \qquad 1 \qquad \qquad \lambda_0 \qquad \qquad \downarrow \times g'_0 \qquad \qquad \downarrow \times g'_0 \qquad \qquad \downarrow \times g'_0 \qquad \qquad \downarrow \times g'_1 \qquad \qquad \downarrow \times g'_1 \qquad \qquad \downarrow \times g'_1 \qquad \qquad \downarrow \times g'_2 \qquad \qquad \downarrow$$

$$f(w_0) = \log(1 + \exp(-3.5w_0)), \qquad v_{k+1} = g_k(v_k) \qquad \lambda_k = \partial f/\partial v_k$$

$$v_k \qquad \partial v_k/\partial v_{k-1} \qquad \partial f/\partial v_k$$

$$v_0 \qquad w_0 \qquad 1 \qquad \lambda_0 \qquad \chi g'_0 \qquad \chi g'_0 \qquad \chi g'_0 \qquad \chi g'_0 \qquad \chi g'_1 \qquad \chi g'_2 \qquad$$

$$f(w_0) = \log(1 + \exp(-3.5w_0)), \qquad v_{k+1} = g_k(v_k) \qquad \lambda_k = \partial f/\partial v_k$$

$$v_k \qquad \partial v_k/\partial v_{k-1} \qquad \partial f/\partial v_k$$

$$v_0 \qquad w_0 \qquad 1 \qquad \lambda_0 \qquad -3.5 \exp(v_1)/v_2$$

$$v_1 \qquad -3.5v_0 \qquad -3.5 \qquad \lambda_1 \qquad \exp(v_1)/v_2$$

$$v_2 \qquad 1 + \exp(v_1) \qquad \exp(v_1) \qquad \lambda_2 \qquad 1/v_2$$

$$v_3 \qquad \log(v_2) \qquad 1/v_2 \qquad \lambda_3 \qquad 1$$

Forward-Backward Computation

Forward pass $\frac{\partial v_{k+1}}{\partial v_k}$

- Compute $v_1 = g_0(v_0), v_2 = g_1(v_1), v_3 = g_2(v_2)$
- ▶ Store $\frac{\partial v_1}{\partial v_0} = g_0'(v_0), \frac{\partial v_2}{\partial v_1} = g_1'(v_1), \frac{\partial v_3}{\partial v_2} = g_2'(v_2)$

Forward-Backward Computation

Forward pass $\frac{\partial v_{k+1}}{\partial v_k}$

- ► Compute $v_1 = g_0(v_0), v_2 = g_1(v_1), v_3 = g_2(v_2)$
- ▶ Store $\frac{\partial v_1}{\partial v_0} = g_0'(v_0), \frac{\partial v_2}{\partial v_1} = g_1'(v_1), \frac{\partial v_3}{\partial v_2} = g_2'(v_2)$

Backward pass $\frac{\partial f}{\partial v_k}$

- ▶ Initialize $\frac{\partial f}{\partial v_3} = 1$
- ▶ For k = 2, ... 0,
- $\qquad \text{Compute } \frac{\partial f}{\partial v_k} = \frac{\partial v_{k+1}}{\partial v_k} \frac{\partial f}{\partial v_{k+1}}$
- Output $f'(w_0) = \frac{\partial f}{\partial v_0}$

Outline

Differentiation Methods

Simple Derivative Computation

Automatic Differentiation Toolbox

Gradient Computation

Gradient for Deep Neural Network

Advanced Derivatives

From theory to practice

Good to know how automatic differentiation works

From theory to practice

- Good to know how automatic differentiation works
- ▶ Hard to implement for generic decomposition or device

From theory to practice

- Good to know how automatic differentiation works
- ▶ Hard to implement for generic decomposition or device
- Use publicly available libraries such as
 - → PyTorch, TensorFlow, Theano . . .

From theory to practice

- Good to know how automatic differentiation works
- ▶ Hard to implement for generic decomposition or device
- Use publicly available libraries such as
 - \rightarrow PyTorch, TensorFlow, Theano . . .

Here brief introduction to PyTorch

Automatic Differentiation in PyTorch

```
from torch import rand, log, exp
# Instantiate variable
w0 = rand(1)
# Flag to record any computation involving w0
w0.requires grad = True
# Compute logistic loss on (x,y) = (3.5, 1)
out = \log(1+\exp(-3.5*w0))
# Backpropagate gradients of any input involved in out
out.backward()
# Derivative is recorded in the variable
print(w0.grad)
```

Features

- Vast library of elementary vectorial functions
- Easy construction of complex models by stacking operations
- ► Implemented in GPUs
 - → fast back-propagation of convolution operations

Features

- Vast library of elementary vectorial functions
- ► Easy construction of complex models by stacking operations
- ► Implemented in GPUs
 - ightarrow fast back-propagation of convolution operations

Main message

Can compute derivatives of any computations

Outline

Differentiation Methods

Simple Derivative Computation

Automatic Differentiation Toolbox

Gradient Computation

Gradient for Deep Neural Network

Advanced Derivatives

Same forward-backward algorithm, replaces scalar by vectors,

$$f(w_0) = \sum_{i=1}^n \log(1 + \exp(-y_i w_0^\top x_i)), \ w_0 \in \mathbb{R}^d, \ x_i \in \mathbb{R}^d, \ y_i \in \{-1, 1\}$$

Same forward-backward algorithm, replaces scalar by vectors,

$$f(w_0) = \sum_{i=1}^n \log(1 + \exp(-y_i w_0^\top x_i)), \ w_0 \in \mathbb{R}^d, \ x_i \in \mathbb{R}^d, \ y_i \in \{-1, 1\}$$

$$f(w_0) = g_3 \circ g_2 \circ g_1 \circ g_0(w_0)$$
 where, denoting $X = (y_1 x_1, \dots, y_n x_n)^\top$, $\mathbf{1}_n = (1, \dots, 1)$,
$$v_1 = g_0(v_0) = -Xv_0 \qquad v_3 = g_2(v_2) = \log(v_2)$$

$$v_2 = g_1(v_1) = \mathbf{1}_n + \exp(v_1) \qquad v_4 = g_3(v_3) = \mathbf{1}_n^\top v_3$$

Chain rule

$$f(w_0) = g_3 \circ g_2 \circ g_1 \circ g_0(w_0)$$

$$\nabla f(w_0) = \nabla g_0(v_0) \nabla g_1(v_1) \nabla g_2(v_2) \nabla g_3(v_3)$$

where - g_2 , g_1 , g_0 are multivariate functions, e.g., $g_0: \mathbb{R}^d \to \mathbb{R}^n$ - g_3 is real-valued, i.e,. $g_3: \mathbb{R}^n \to \mathbb{R}$

Chain rule

$$f(w_0) = g_3 \circ g_2 \circ g_1 \circ g_0(w_0)$$

$$\nabla f(w_0) = \nabla g_0(v_0) \nabla g_1(v_1) \nabla g_2(v_2) \nabla g_3(v_3)$$

where - g_2 , g_1 , g_0 are multivariate functions, e.g., $g_0: \mathbb{R}^d \to \mathbb{R}^n$ - g_3 is real-valued, i.e,. $g_3: \mathbb{R}^n \to \mathbb{R}$

Consequence: $\nabla g_0(v_0), \nabla g_1(v_1), \nabla g_2(v_2)$ are now matrices, $\nabla g_3(v_3)$ is a vector

Chain rule

$$f(w_0) = g_3 \circ g_2 \circ g_1 \circ g_0(w_0)$$

$$\nabla f(w_0) = \nabla g_0(v_0) \nabla g_1(v_1) \nabla g_2(v_2) \nabla g_3(v_3)$$

where - g_2 , g_1 , g_0 are multivariate functions, e.g., $g_0: \mathbb{R}^d \to \mathbb{R}^n$ - g_3 is real-valued, i.e,. $g_3: \mathbb{R}^n \to \mathbb{R}$

Consequence: $\nabla g_0(v_0), \nabla g_1(v_1), \nabla g_2(v_2)$ are now matrices, $\nabla g_3(v_3)$ is a vector

Backward pass $\nabla_{v_k} f$ (vectors)

- ▶ Initialize $\nabla_{v2} f = \nabla g_3(v_3)$ (first step amounts to compute a vector)
- ▶ For k = 1, ... 0,
- Compute $\nabla_{v_k} f = \nabla_{v_k} v_{k+1} \nabla_{v_{k+1}} f$ (iterations are matrix-vector products)
- Output $\nabla f(w_0) = \nabla_{v_0} f$

PyTorch Implementation

```
from torch import rand, log, exp
\# Create data n =100, d = 20
X = rand(100, 20)
w0 = rand(20); w0.requires_grad=True
# Compute logistic loss
out = sum(log(1 + exp(-X.mv(w0))))
# Backpropagate gradients
out.backward()
print(w0.grad)
print(w0.grad.shape) # get 20 dimensional vector
```

Outline

Differentiation Methods

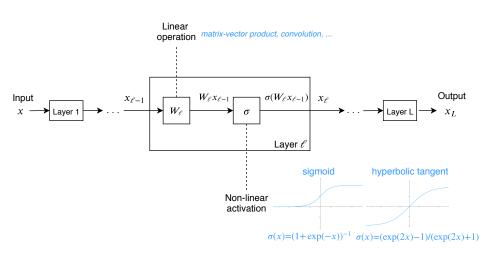
Simple Derivative Computation

Automatic Differentiation Toolbox

Gradient Computation

Gradient for Deep Neural Network

Advanced Derivatives



Deep neural network structure

A deep neural network transforms an input $x = x_0$ using

$$x_{\ell} = \sigma_{\ell}(W_{\ell} \cdot x_{\ell-1})$$
 (Layer ℓ)

where σ_ℓ is the activation function, W_ℓ are the weights of the layer

Deep neural network structure

A deep neural network transforms an input $x = x_0$ using

$$x_{\ell} = \sigma_{\ell}(W_{\ell} \cdot x_{\ell-1})$$
 (Layer ℓ)

where σ_{ℓ} is the activation function, W_{ℓ} are the weights of the layer

Objective

$$\min_{W=(W_0,\ldots,W_L)} \frac{1}{n} \sum_{i=1}^n f^{(i)}(W) = \frac{1}{n} \sum_{i=1}^n f\left(y^{(i)}, x_L^{(i)}(W_0,\ldots,W_L)\right)$$

Deep neural network structure

A deep neural network transforms an input $x = x_0$ using

$$x_{\ell} = \sigma_{\ell}(W_{\ell} \cdot x_{\ell-1})$$
 (Layer ℓ)

where σ_ℓ is the activation function, W_ℓ are the weights of the layer

Objective

$$\min_{W=(W_0,\ldots,W_L)} \frac{1}{n} \sum_{i=1}^n f^{(i)}(W) = \frac{1}{n} \sum_{i=1}^n f\left(y^{(i)}, x_L^{(i)}(W_0,\ldots,W_L)\right)$$

with stochastic gradient descent

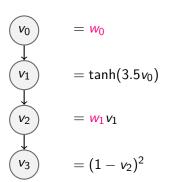
$$W \leftarrow W - \gamma \nabla f^{(i)}(W)$$

Binary classification with one hidden layer on \mathbb{R} Given sample (x,y)=(3.5,1) wants to compute gradient of

$$f: (w_0, w_1) \to (y - w_1 \tanh(xw_0))^2 = (1 - w_1 \tanh(3.5w_0))^2$$

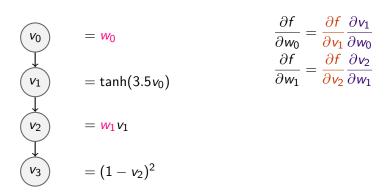
Binary classification with one hidden layer on \mathbb{R} Given sample (x, y) = (3.5, 1) wants to compute gradient of

$$f: (w_0, w_1) \to (y - w_1 \tanh(xw_0))^2 = (1 - w_1 \tanh(3.5w_0))^2$$



Binary classification with one hidden layer on \mathbb{R} Given sample (x, y) = (3.5, 1) wants to compute gradient of

$$f: (w_0, w_1) \to (y - w_1 \tanh(xw_0))^2 = (1 - w_1 \tanh(3.5w_0))^2$$



Binary classification with one hidden layer on $\mathbb R$

Given sample (x, y) = (3.5, 1) wants to compute gradient of

$$f: (w_0, w_1) \to (y - w_1 \tanh(xw_0))^2 = (1 - w_1 \tanh(3.5w_0))^2$$

$$\begin{array}{ccc} \hline v_0 & = w_0 \\ \hline v_1 & = \tanh(3.5v_0) \\ \hline v_2 & = w_1v_1 \\ \hline v_3 & = (1-v_2)^2 \\ \hline \end{array}$$

$$\frac{\partial f}{\partial w_0} = \frac{\partial f}{\partial v_1} \frac{\partial v_1}{\partial w_0}$$
$$\frac{\partial f}{\partial w_1} = \frac{\partial f}{\partial v_2} \frac{\partial v_2}{\partial w_1}$$

 \rightarrow Use same computations $\frac{\partial f}{\partial v_e}$ for all layers

Binary classification with one hidden layer on \mathbb{R} Given sample (x, y) = (3.5, 1) wants to compute gradient of

$$f: (w_0, w_1) \to (y - w_1 \tanh(xw_0))^2 = (1 - w_1 \tanh(3.5w_0))^2$$

$$\begin{array}{ccc}
v_0 & = w_0 \\
\hline
v_1 & = \tanh(3.5v_0) \\
\hline
v_2 & = w_1v_1 \\
\hline
v_3 & = (1 - v_2)^2
\end{array}$$

$$\frac{\partial f}{\partial w_0} = \frac{\partial f}{\partial v_1} \frac{\partial v_1}{\partial w_0}$$
$$\frac{\partial f}{\partial w_1} = \frac{\partial f}{\partial v_2} \frac{\partial v_2}{\partial w_1}$$

- ightarrow Use same computations for all layers
- ightarrow At layer ℓ , output

$$\frac{\partial f}{\partial w_{\ell}} = \frac{\partial f}{\partial v_{\ell}} \frac{\partial v_{\ell}}{\partial w_{\ell}}$$

27 / 38

PyTorch Implementation

```
from torch import rand, tanh
# Instantiate weights
w0 = rand(1); w1 = rand(1)
# Flag to record any computation involving w0 or w1
w0.requires grad = True; w1.requires grad = True
# Compute square loss of 1-layer DNN with tanh
    activation on (x,y)=(3.5,1)
out = tanh(3.5*w0)
out = w1*out
out = (1 - out)^{**}2
# Backpropagate gradients of any input involved in out
out.backward()
# Gradients are recorded in the variables
print(w0.grad)
print(w1.grad)
```

Outline

Differentiation Methods

Simple Derivative Computation

Automatic Differentiation Toolbox

Gradient Computation

Gradient for Deep Neural Network

Advanced Derivatives

Summary

Automatic differentiation procedure

- Uses decomposition of functions in simple blocks
- ► Forward pass: Computes function & successive derivatives
- Backward pass: Back-propagates derivative of the objective

Summary

Automatic differentiation procedure

- Uses decomposition of functions in simple blocks
- ► Forward pass: Computes function & successive derivatives
- ► Backward pass: Back-propagates derivative of the objective

Automatic differentiation toolbox

Highly efficient and versatile libraries available

Summary

Automatic differentiation procedure

- Uses decomposition of functions in simple blocks
- ► Forward pass: Computes function & successive derivatives
- Backward pass: Back-propagates derivative of the objective

Automatic differentiation toolbox

Highly efficient and versatile libraries available

Advanced Differentiation

- Use auto. diff. toolbox to compute hessians, jacobians, ...
- Can differentiate through any model, even combinatorial

Extensions

Not covered

- Forward mode of automatic-differentiation, automatic differentiation on complex graph of computations
 - → see e.g. [Griewank and Walther, 2008]
- ▶ Back-propagating sub-gradients for e.g. ReLU activation
 → Is auto. diff. well defined ? see [Kakade and Lee, 2018]
- Second-order methods and optimization tricks
 - \rightarrow Read [LeCun et al, 1998]

Outline

Differentiation Methods

Simple Derivative Computation

Automatic Differentiation Toolbox

Gradient Computation

Gradient for Deep Neural Network

Advanced Derivatives

Computing Second Order Derivative

Until here 'only' gradient computations Yet derivative of *any* computation available

Computing Second Order Derivative

Until here 'only' gradient computations Yet derivative of *any* computation available

Question: How to get second order derivative?

Computing Second Order Derivative

Until here 'only' gradient computations Yet derivative of *any* computation available

Question: How to get second order derivative?

Answer: Back-propagate through gradient computations

$$\frac{\partial^2 f}{\partial^2 w} = \frac{\partial}{\partial w} \frac{\partial f}{\partial w}$$

Computing Second Order Derivative

```
from torch import rand, tanh
from torch.autograd import grad
x=rand(1); w0=rand(1); w0.requires\_grad = True;
out = tanh(x*w0)
# Flag to record also computations of the gradient
out.backward(create_graph=True)
# Back-propagate through the computations of the gradient
hess = grad (outputs=w0.grad, inputs=w0)
print(hess)
```

Functions considered

- ▶ Real-valued functions $f : \mathbb{R}^d \to \mathbb{R}$
- \triangleright Arithmetic operations are matrix-vector products with cost d^2

Functions considered

- ▶ Real-valued functions $f: \mathbb{R}^d \to \mathbb{R}$
- \triangleright Arithmetic operations are matrix-vector products with cost d^2

Now Multivariate func. $f: \mathbb{R}^d \to \mathbb{R}^p$, derivative $\nabla f(w) \in \mathbb{R}^{d \times p}$

Functions considered

- ▶ Real-valued functions $f: \mathbb{R}^d \to \mathbb{R}$
- \triangleright Arithmetic operations are matrix-vector products with cost d^2

Now Multivariate func. $f: \mathbb{R}^d \to \mathbb{R}^p$, derivative $\nabla f(w) \in \mathbb{R}^{d \times p}$

Functions considered

- ▶ Real-valued functions $f : \mathbb{R}^d \to \mathbb{R}$
- \triangleright Arithmetic operations are matrix-vector products with cost d^2

Now Multivariate func. $f: \mathbb{R}^d \to \mathbb{R}^p$, derivative $\nabla f(w) \in \mathbb{R}^{d \times p}$

- 1. Same forward-backward as before
 - \rightarrow Arithmetic operations are matrix-matrix products, cost pd^2

Functions considered

- ▶ Real-valued functions $f : \mathbb{R}^d \to \mathbb{R}$
- \triangleright Arithmetic operations are matrix-vector products with cost d^2

Now Multivariate func. $f: \mathbb{R}^d \to \mathbb{R}^p$, derivative $\nabla f(w) \in \mathbb{R}^{d \times p}$

- 1. Same forward-backward as before
 - \rightarrow Arithmetic operations are matrix-matrix products, cost pd^2
- 2. Do not compute multi-variate gradient if you only need

$$z : \to \nabla f(w)z$$
 for $z \in \mathbb{R}^p$

Functions considered

- ▶ Real-valued functions $f : \mathbb{R}^d \to \mathbb{R}$
- \triangleright Arithmetic operations are matrix-vector products with cost d^2

Now Multivariate func. $f: \mathbb{R}^d \to \mathbb{R}^p$, derivative $\nabla f(w) \in \mathbb{R}^{d \times p}$

How to compute gradient?

- 1. Same forward-backward as before
 - \rightarrow Arithmetic operations are matrix-matrix products, cost pd^2
- 2. Do not compute multi-variate gradient if you only need

$$z : \to \nabla f(w)z$$
 for $z \in \mathbb{R}^p$

 \rightarrow Amounts to compute gradient of $w : \rightarrow z^{\top} f(w)$

Functions considered

- ▶ Real-valued functions $f: \mathbb{R}^d \to \mathbb{R}$
- \triangleright Arithmetic operations are matrix-vector products with cost d^2

Now Multivariate func. $f: \mathbb{R}^d \to \mathbb{R}^p$, derivative $\nabla f(w) \in \mathbb{R}^{d \times p}$

- 1. Same forward-backward as before
 - \rightarrow Arithmetic operations are matrix-matrix products, cost pd^2
- 2. Do not compute multi-variate gradient if you only need

$$z : \to \nabla f(w)z$$
 for $z \in \mathbb{R}^p$

- \rightarrow Amounts to compute gradient of $w : \rightarrow z^{\top} f(w)$
- \rightarrow Can solve $\nabla f(w)z = v$ only by calls to $\nabla f(w)z$

```
from torch import rand, tanh
X=rand(10, 4); w0=rand(4); w0.requires_grad=True
out = tanh(X.mv(w0))
z = rand(10)
# Add z into the backward operation to convert
# the output to z^{\top}f(w)
out.backward(create_graph=True, gradient=z)
print(w0.grad)
```

Combinatorial objectives

Machine learning can involve combinatorial problems ex: object segmentation, sentence alignment

Combinatorial objectives

- Machine learning can involve combinatorial problems ex: object segmentation, sentence alignment
- What if features are learned during the optimization ?

Combinatorial objectives

- Machine learning can involve combinatorial problems
 ex: object segmentation, sentence alignment
- ▶ What if features are learned during the optimization ?
- ▶ Back-propagates through the optimization iterations

Structured Prediction see e.g. [Pillutla et al, 2018]

► Complex outputs *y* such as sequences or images

Structured Prediction see e.g. [Pillutla et al, 2018]

- Complex outputs y such as sequences or images
- Prediction of input x given by inference

$$\hat{y} = \max_{\tilde{y}} \phi(x, \tilde{y}; w)$$

where $\phi(x, y; w)$ is the score of label y for input x

→ Combinatorial problem solved by dynamic programming

Structured Prediction see e.g. [Pillutla et al, 2018]

- Complex outputs y such as sequences or images
- Prediction of input x given by inference

$$\hat{y} = \max_{\tilde{y}} \phi(x, \tilde{y}; w)$$

where $\phi(x, y; w)$ is the score of label y for input x

- → Combinatorial problem solved by dynamic programming
- ▶ Given loss on inputs $\ell(\hat{y}, y)$, surrogate objective reads

$$f(w) = \max_{\tilde{y}} \{\phi(x, \tilde{y}; w) + \ell(\tilde{y}, y)\} - \phi(x, y; w)$$

Structured Prediction see e.g. [Pillutla et al, 2018]

- Complex outputs y such as sequences or images
- Prediction of input x given by inference

$$\hat{y} = \max_{\tilde{y}} \phi(x, \tilde{y}; w)$$

where $\phi(x, y; w)$ is the score of label y for input $x \to Combinatorial$ problem solved by dynamic programming

▶ Given loss on inputs $\ell(\hat{y}, y)$, surrogate objective reads

$$f(w) = \max_{\tilde{y}} \{ \phi(x, \tilde{y}; w) + \ell(\tilde{y}, y) \} - \phi(x, y; w)$$

► (Sub)-gradient given by back-propagating through the max, i.e., through the dynamic programming procedure