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Machine Learning Pipeline

Machine learning pipeline
I Collect and preprocess data

e.g. collect images, crop, center, normalize
I Design model for given task

e.g. linear classifier with logistic loss
I Optimize your model,

i.e., get parameters that minimize the error of the model
e.g. using gradient descent on error f of your model

w ← w − γ∇f (w)
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Machine Learning Pipeline

Machine learning pipeline
I Collect and preprocess data

e.g. collect images, crop, center, normalize
I Design model for given task

e.g. linear classifier with logistic loss
I Optimize your model,

i.e., get parameters that minimize the error of the model
e.g. using gradient descent on error of your model f

Bottleneck
I How to compute the gradients ?
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Differentiation Methods

Binary classification
Given sample (x , y) ∈ Rd × {−1, 1} want to compute gradient of

f : w → log(1 + exp(−yw>x))

Solutions to compute the gradient:
1. Write down analytic form

∇f (w) = −yx
1 + exp(−yw>x)

Pros: Exact formulation, independent of the function evaluation
Cons: Need access to the analytic form of the function
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Differentiation Methods

Binary classification
Given sample (x , y) ∈ Rd × {−1, 1} wants to compute gradient of

f : w → log(1 + exp(−yw>x))

Solutions to compute the gradient:
1. Write down analytic form
2. Use finite approximation

∇f (w)>d ≈ f (w + δd)− f (w)
δ

for 0 < δ � 1

Pros: Only needs access to the function evaluation of f
Cons: Inexact gradient
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2. Use finite approximation
3. Decompose f as successive compositions, use the chain-rule

Automatic differentiation

Pros: - Only needs access to the function evaluation by compositions
- Exact gradient
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Simple Derivative Computation

Consider Rd = R, a sample (x , y) = (3.5, 1), s.t.

f : w0 → log(1 + exp(−3.5w0))

Function decomposition w0 input, vk successive evaluations

v0 = w0

v1 = −3.5v0

v2 = 1 + exp(v1)

v3 = log(v2) = f (w0)
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f : w0 → log(1 + exp(−3.5w0))

Function decomposition w0 input, vk successive evaluations

v0 = w0

v1 = −3.5v0

v2 = 1 + exp(v1)

v3 = log(v2) = f (w0)

f : w0 → g2 ◦ g1 ◦ g0(w0)

where g0 : v0 → −3.5v0

g1 : v1 → 1 + exp(v1)
g2 : v2 → log(v2)
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Chain Rule

Chain rule Given f (w0) = g2 ◦ g1 ◦ g0(w0),

f ′(w0) = g ′0(v0) g ′1(v1) g ′2(v2)

where v0 = w0, v1 = g0(v0), v2 = g1(v1)

Only need derivatives of elementary functions

Elementary functions
I v → av , v → vk , v → 1/v
I v → exp(v), v → log(v), v → cos(v), v → sin(v)
I . . .
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Forward-Backward Computation

Idea Recursive computations, using ∂w0 = ∂v0,

f ′(w0) = ∂f
∂v0

= ∂v1
∂v0

∂f
∂v1

= ∂v1
∂v0

∂v2
∂v1

∂f
∂v2

= ∂v1
∂v0

∂v2
∂v1

∂v3
∂v2

∂f
∂v3

Algorithm
I Compute ∂vk+1

∂vk
= g ′k(vk) in a forward pass

I Compute ∂f
∂vk

in a backward pass using

∂f
∂vk

= ∂vk+1
∂vk

∂f
∂vk+1
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Simple Derivative Computation

f (w0) = log(1 + exp(−3.5w0)), vk+1 = gk(vk) λk = ∂f /∂vk

vk

v0 w0

v1 −3.5v0

v2 1 + exp(v1)

v3 log(v2)

◦g0

◦g1

◦g2

∂vk/∂vk−1

1

−3.5

exp(v1)

1/v2

λ0

λ1

λ2

λ3

×g ′0

×g ′1

×g ′2

∂f /∂vk

1

1/v2

exp(v1)/v2

−3.5 exp(v1)/v2
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Forward-Backward Computation

Forward pass ∂vk+1
∂vk

I Compute v1 = g0(v0), v2 = g1(v1), v3 = g2(v2)
I Store ∂v1

∂v0
= g ′0(v0), ∂v2

∂v1
= g ′1(v1), ∂v3

∂v2
= g ′2(v2)

Backward pass ∂f
∂vk

I Initialize ∂f
∂v3

= 1
I For k = 2, . . . 0,
I Compute ∂f

∂vk
= ∂vk+1

∂vk
∂f

∂vk+1

I Output f ′(w0) = ∂f
∂v0
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Automatic Differentiation Toolboxes

From theory to practice
I Good to know how automatic differentiation works

I Hard to implement for generic decomposition or device
I Use publicly available libraries such as
→ PyTorch, TensorFlow, Theano . . .

Here brief introduction to PyTorch
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Automatic Differentiation in PyTorch

from to r ch impor t rand , log , exp

# I n s t a n t i a t e v a r i a b l e
w0 = rand (1 )

# Flag to r e c o r d any computat ion i n v o l v i n g w0
w0 . r e qu i r e s_g r a d = True

# Compute l o g i s t i c l o s s on ( x , y ) = ( 3 . 5 , 1)
out = l og (1+exp (−3.5∗w0) )

# Backpropagate g r a d i e n t s o f any i npu t i n v o l v e d i n out
out . backward ( )

# De r i v a t i v e i s r e c o r d ed i n the v a r i a b l e
p r i n t (w0 . grad )
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Automatic Differentiation Toolboxes

Features
I Vast library of elementary vectorial functions
I Easy construction of complex models by stacking operations
I Implemented in GPUs
→ fast back-propagation of convolution operations

Main message

Can compute derivatives of any computations
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Gradient Computation

Same forward-backward algorithm, replaces scalar by vectors,

f (w0) =
n∑

i=1
log(1 + exp(−yiw>0 xi)), w0 ∈ Rd , xi ∈ Rd , yi ∈ {−1, 1}

f (w0) = g3 ◦ g2 ◦ g1 ◦ g0(w0)

where, denoting X = (y1x1, . . . , ynxn)>, 1n = (1, . . . , 1),

v1 = g0(v0) = −Xv0 v3 = g2(v2) = log(v2)
v2 = g1(v1) = 1n + exp(v1) v4 = g3(v3) = 1>n v3
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Gradient Computation
Chain rule

f (w0) = g3 ◦ g2 ◦ g1 ◦ g0(w0)
∇f (w0) = ∇g0(v0)∇g1(v1)∇g2(v2)∇g3(v3)

where - g2, g1, g0 are multivariate functions, e.g., g0 : Rd → Rn

- g3 is real-valued, i.e,. g3 : Rn → R

Consequence: ∇g0(v0),∇g1(v1),∇g2(v2) are now matrices,
∇g3(v3) is a vector

Backward pass ∇vk f (vectors)
I Initialize ∇v2f = ∇g3(v3) (first step amounts to compute a vector)
I For k = 1, . . . 0,
I Compute ∇vk f = ∇vk vk+1∇vk+1f

(iterations are matrix-vector products)
I Output ∇f (w0) = ∇v0f
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PyTorch Implementation

from to r ch impor t rand , log , exp

# Crea te data n =100 , d = 20
X = rand (100 , 20)

w0 = rand (20) ; w0 . r e q u i r e s_g r a d=True

# Compute l o g i s t i c l o s s
out = sum( l o g (1+ exp(−X.mv(w0) ) ) )

# Backpropagate g r a d i e n t s
out . backward ( )

p r i n t (w0 . grad )
p r i n t (w0 . grad . shape ) # get 20 d imen s i o n a l v e c t o r
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Deep Neural Network

�ℓ

Layer ℓ
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Deep Neural Network

Deep neural network structure
A deep neural network transforms an input x = x0 using

x` = σ`(W` · x`−1) (Layer `)

where σ` is the activation function, W` are the weights of the layer

Objective

min
W =(W0,...,WL)

1
n

n∑
i=1

f (i)(W ) = 1
n

n∑
i=1

f
(
y (i), x (i)

L (W0, . . . ,WL)
)

with stochastic gradient descent

W ←W − γ∇f (i)(W )
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Gradient for Deep Neural Network
Binary classification with one hidden layer on R
Given sample (x , y) = (3.5, 1) wants to compute gradient of

f : (w0,w1)→ (y − w1 tanh(xw0))2 = (1− w1 tanh(3.5w0))2

v0 = w0

v1 = tanh(3.5v0)

v2 = w1v1

v3 = (1− v2)2

∂f
∂w0

= ∂f
∂v1

∂v1
∂w0

∂f
∂w1

= ∂f
∂v2

∂v2
∂w1

→ Use same computations ∂f
∂v`

for all layers
→ At layer `, output

∂f
∂w`

= ∂f
∂v`

∂v`

∂w`
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PyTorch Implementation
from to r ch impor t rand , tanh

# I n s t a n t i a t e we i gh t s
w0 = rand (1 ) ; w1 = rand (1 )

# Flag to r e c o r d any computat ion i n v o l v i n g w0 or w1
w0 . r e qu i r e s_g r a d = True ; w1 . r e q u i r e s_g r a d = True

# Compute squa r e l o s s o f 1− l a y e r DNN with tanh
a c t i v a t i o n on ( x , y ) =(3 .5 ,1)

out = tanh (3 . 5∗w0)
out = w1∗ out
out = (1 − out )∗∗2

# Backpropagate g r a d i e n t s o f any i npu t i n v o l v e d i n out
out . backward ( )

# Grad i e n t s a r e r e co r d ed i n the v a r i a b l e s
p r i n t (w0 . grad )
p r i n t (w1 . grad )

28 / 38



Outline

Differentiation Methods

Simple Derivative Computation

Automatic Differentiation Toolbox

Gradient Computation

Gradient for Deep Neural Network

Advanced Derivatives

29 / 38



Summary

Automatic differentiation procedure
I Uses decomposition of functions in simple blocks
I Forward pass: Computes function & successive derivatives
I Backward pass: Back-propagates derivative of the objective

Automatic differentiation toolbox
I Highly efficient and versatile libraries available

Advanced Differentiation
I Use auto. diff. toolbox to compute hessians, jacobians, . . .
I Can differentiate through any model, even combinatorial
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Extensions

Not covered
I Forward mode of automatic-differentiation, automatic

differentiation on complex graph of computations
→ see e.g. [Griewank and Walther, 2008]

I Back-propagating sub-gradients for e.g. ReLU activation
→ Is auto. diff. well defined ? see [Kakade and Lee, 2018]

I Second-order methods and optimization tricks
→ Read [LeCun et al, 1998]
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Computing Second Order Derivative

Until here ’only’ gradient computations
Yet derivative of any computation available

Question: How to get second order derivative ?

Answer: Back-propagate through gradient computations

∂2f
∂2w = ∂

∂w
∂f
∂w
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Computing Second Order Derivative

from to r ch impor t rand , tanh
from to r ch . autograd impor t grad

x=rand (1 ) ; w0=rand (1 ) ; w0 . r e q u i r e s_g r a d = True ;

out = tanh ( x∗w0)

# Flag to r e c o r d a l s o computat ions o f the g r a d i e n t
out . backward ( c r ea t e_graph=True )

# Back−propagate through the computat ions o f the g r a d i e n t
he s s = grad ( ou tpu t s=w0 . grad , i n p u t s=w0)
p r i n t ( he s s )
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Computing Gradients of Multivariate Functions

Functions considered
I Real-valued functions f : Rd → R
I Arithmetic operations are matrix-vector products with cost d2

Now Multivariate func. f : Rd → Rp, derivative ∇f (w) ∈ Rd×p

How to compute gradient ?

1. Same forward-backward as before
→ Arithmetic operations are matrix-matrix products, cost pd2

2. Do not compute multi-variate gradient if you only need
z :→ ∇f (w)z for z ∈ Rp

→ Amounts to compute gradient of w :→ z>f (w)
→ Can solve ∇f (w)z = v only by calls to ∇f (w)z

35 / 38



Computing Gradients of Multivariate Functions

Functions considered
I Real-valued functions f : Rd → R
I Arithmetic operations are matrix-vector products with cost d2

Now Multivariate func. f : Rd → Rp, derivative ∇f (w) ∈ Rd×p

How to compute gradient ?

1. Same forward-backward as before
→ Arithmetic operations are matrix-matrix products, cost pd2

2. Do not compute multi-variate gradient if you only need
z :→ ∇f (w)z for z ∈ Rp

→ Amounts to compute gradient of w :→ z>f (w)
→ Can solve ∇f (w)z = v only by calls to ∇f (w)z

35 / 38



Computing Gradients of Multivariate Functions

Functions considered
I Real-valued functions f : Rd → R
I Arithmetic operations are matrix-vector products with cost d2

Now Multivariate func. f : Rd → Rp, derivative ∇f (w) ∈ Rd×p

How to compute gradient ?

1. Same forward-backward as before
→ Arithmetic operations are matrix-matrix products, cost pd2

2. Do not compute multi-variate gradient if you only need
z :→ ∇f (w)z for z ∈ Rp

→ Amounts to compute gradient of w :→ z>f (w)
→ Can solve ∇f (w)z = v only by calls to ∇f (w)z

35 / 38



Computing Gradients of Multivariate Functions

Functions considered
I Real-valued functions f : Rd → R
I Arithmetic operations are matrix-vector products with cost d2

Now Multivariate func. f : Rd → Rp, derivative ∇f (w) ∈ Rd×p

How to compute gradient ?

1. Same forward-backward as before
→ Arithmetic operations are matrix-matrix products, cost pd2

2. Do not compute multi-variate gradient if you only need
z :→ ∇f (w)z for z ∈ Rp

→ Amounts to compute gradient of w :→ z>f (w)
→ Can solve ∇f (w)z = v only by calls to ∇f (w)z

35 / 38



Computing Gradients of Multivariate Functions

Functions considered
I Real-valued functions f : Rd → R
I Arithmetic operations are matrix-vector products with cost d2

Now Multivariate func. f : Rd → Rp, derivative ∇f (w) ∈ Rd×p

How to compute gradient ?

1. Same forward-backward as before
→ Arithmetic operations are matrix-matrix products, cost pd2

2. Do not compute multi-variate gradient if you only need
z :→ ∇f (w)z for z ∈ Rp

→ Amounts to compute gradient of w :→ z>f (w)
→ Can solve ∇f (w)z = v only by calls to ∇f (w)z

35 / 38



Computing Gradients of Multivariate Functions

Functions considered
I Real-valued functions f : Rd → R
I Arithmetic operations are matrix-vector products with cost d2

Now Multivariate func. f : Rd → Rp, derivative ∇f (w) ∈ Rd×p

How to compute gradient ?

1. Same forward-backward as before
→ Arithmetic operations are matrix-matrix products, cost pd2

2. Do not compute multi-variate gradient if you only need
z :→ ∇f (w)z for z ∈ Rp

→ Amounts to compute gradient of w :→ z>f (w)

→ Can solve ∇f (w)z = v only by calls to ∇f (w)z

35 / 38



Computing Gradients of Multivariate Functions

Functions considered
I Real-valued functions f : Rd → R
I Arithmetic operations are matrix-vector products with cost d2

Now Multivariate func. f : Rd → Rp, derivative ∇f (w) ∈ Rd×p

How to compute gradient ?

1. Same forward-backward as before
→ Arithmetic operations are matrix-matrix products, cost pd2

2. Do not compute multi-variate gradient if you only need
z :→ ∇f (w)z for z ∈ Rp

→ Amounts to compute gradient of w :→ z>f (w)
→ Can solve ∇f (w)z = v only by calls to ∇f (w)z

35 / 38



Computing Gradients of Multivariate Functions

from to r ch impor t rand , tanh

X=rand (10 , 4) ; w0=rand (4 ) ; w0 . r e q u i r e s_g r a d=True

out = tanh (X .mv(w0) )

z = rand (10)

# Add z i n t o the backward op e r a t i o n to conv e r t
# the output to z>f (w)
out . backward ( c r ea t e_graph=True , g r a d i e n t=z )

p r i n t (w0 . grad )
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Back-propagating through Optimization Procedure

Combinatorial objectives
I Machine learning can involve combinatorial problems

ex: object segmentation, sentence alignment

I What if features are learned during the optimization ?
I Back-propagates through the optimization iterations
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Back-propagating through Optimization Procedure

Structured Prediction see e.g. [Pillutla et al, 2018]

I Complex outputs y such as sequences or images

I Prediction of input x given by inference
ŷ = max

ỹ
φ(x , ỹ ; w)

where φ(x , y ; w) is the score of label y for input x
→ Combinatorial problem solved by dynamic programming

I Given loss on inputs `(ŷ , y), surrogate objective reads
f (w) = max

ỹ
{φ(x , ỹ ; w) + `(ỹ , y)} − φ(x , y ; w)

I (Sub)-gradient given by back-propagating through the max,
i.e., through the dynamic programming procedure
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ỹ
φ(x , ỹ ; w)
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