Elementary Convergence Guarantees for Gradient-based Optimization of Deep Networks

Vincent Roulet, Zaid Harchaoui University of Washington

57th Allerton Conference on Communication, Control, and Computing

25 Sept. 2019

Overview

How the structure of DNNs impact elementary complexity bounds?

- in terms of oracle complexity ?
 - ightarrow paves the way for principled optimization techniques
- in terms of smoothness properties ?
 - \rightarrow helps comparing architectures

Structure of Deep Neural Networks

Training of a deep neural network of k layers reads

$$\begin{aligned} & \min_{\mathbf{v}_{1},...,\mathbf{v}_{k}} & & \sum_{i=1}^{n} f_{i}(z_{k}^{(i)}) + \sum_{l=1}^{k} r_{l}(\mathbf{v}_{l}) \\ & \text{subject to} & & z_{l}^{(i)} = \phi_{l}(\mathbf{v}_{l}, z_{l-1}^{(i)}) & \text{for } l = 1, \dots, k, & z_{0}^{(i)} = x^{(i)} \end{aligned}$$

- \triangleright v_1, \ldots, v_k are the weights of each layer I
- $ightharpoonup \phi_l$ denotes the l^{th} layer with input z_{l-1} and output z_l
- $f^{(i)}(\hat{y}) = \mathcal{L}(\hat{y}, y^{(i)})$ are losses on the data $x^{(i)}$
- ► r_I are regularizations

Definition of a chain of layers

Definition

A function
$$\psi: \mathbb{R}^p \to \mathbb{R}^q$$
 is a *chain of k layers*, if it is defined for $w = (v_1; \dots; v_k) \in \mathbb{R}^p$ with $v_l \in \mathbb{R}^{\pi_l}$ by
$$\psi(w) = z_k,$$
 with
$$z_l = \phi_l(v_l, z_{l-1}) \quad \text{for } l = 1, \dots, k, \qquad z_0 = x,$$
 where $x \in \mathbb{R}^{\delta_0}$ and $\phi_l: \mathbb{R}^{\pi_l} \times \mathbb{R}^{\delta_{l-1}} \to \mathbb{R}^{\delta_l}$.

Generic formulation

The objective reads then

$$\min_{w} f(\psi(w)) + r(w)$$

where
$$f = \sum_{i} f^{(i)}$$
, $r = \sum_{l} r_{l}$, $\psi = (\psi_{x^{(1)}}; \dots; \psi_{x^{(n)}})$.

Questions:

- 1. How the structure of ψ is exploited to compute optim. oracles?
- 2. What smoothness properties can be stated for ψ ?
- 3. How this applies to specific layers used in deep learning?

Plan

Oracle complexity

Smoothness computations

Applications

Model definitions

Denote the linear approximation of f around x, $\ell_f(y;x)$ Denote the quadratic approximation of f around x, $q_f(y;x)$

Model definitions

Denote the linear approximation of f around x, $\ell_f(y;x)$ Denote the quadratic approximation of f around x, $q_f(y;x)$

Model minimizations

On a point w_t , given a step-size $\gamma > 0$,

Model definitions

Denote the linear approximation of f around x, $\ell_f(y;x)$ Denote the quadratic approximation of f around x, $q_f(y;x)$

Model minimizations

On a point w_t , given a step-size $\gamma > 0$,

(i) a gradient step is defined as

$$w_{t+1} = \underset{w \in \mathbb{R}^p}{\arg\min} \ell_{f \circ \psi}(w; w_t) + \ell_r(w; w_t) + \frac{1}{2\gamma} ||w - w_t||_2^2$$

Model definitions

Denote the linear approximation of f around x, $\ell_f(y;x)$ Denote the quadratic approximation of f around x, $q_f(y;x)$

Model minimizations

On a point w_t , given a step-size $\gamma > 0$,

(i) a gradient step is defined as

$$w_{t+1} = \arg\min_{w \in \mathbb{R}^p} \ell_{f \circ \psi}(w; w_t) + \ell_r(w; w_t) + \frac{1}{2\gamma} \|w - w_t\|_2^2$$

(ii) a regularized Gauss-Newton step is defined as

$$w_{t+1} = \arg\min_{w \in \mathbb{R}^p} \frac{q_f(\ell_{\psi}(w; w_t); \psi(w_t)) + \frac{1}{q_r}(w; w_t) + \frac{1}{2\gamma} \|w - w_t\|_2^2$$

Proposition

Gradient, Gauss-Newton and Newton steps can be computed by dynamic programming on the linearized network.

Proposition

Gradient, Gauss-Newton and Newton steps can be computed by dynamic programming on the linearized network.

Consequences:

Proposition

Gradient, Gauss-Newton and Newton steps can be computed by dynamic programming on the linearized network.

Consequences:

 \triangleright all those steps have a complexity linear in the depth k,

Proposition

Gradient, Gauss-Newton and Newton steps can be computed by dynamic programming on the linearized network.

Consequences:

- \triangleright all those steps have a complexity linear in the depth k,
- retrieves gradient back-propagation as dynamic programming,

Proposition

Gradient, Gauss-Newton and Newton steps can be computed by dynamic programming on the linearized network.

Consequences:

- \triangleright all those steps have a complexity linear in the depth k,
- retrieves gradient back-propagation as dynamic programming,
- for Gauss-Newton or Newton still requires a priori inversion of Hessians of the size of the layers...

Gauss-Newton by automatic differentiation

Definition

An automatic differentiation oracle is any procedure that, given a differentiable chain of layers $\psi: \mathbb{R}^p \to \mathbb{R}^q$ and $w \in \mathbb{R}^p$ computes $s \to \nabla \psi(w)s$ for any $s \in \mathbb{R}^q$.

Gauss-Newton by automatic differentiation

Definition

An automatic differentiation oracle is any procedure that, given a differentiable chain of layers $\psi:\mathbb{R}^p\to\mathbb{R}^q$ and $w\in\mathbb{R}^p$ computes

$$s \to \nabla \psi(w)s$$
 for any $s \in \mathbb{R}^q$.

Proposition

A Gauss-Newton-step for convex f and r

1. can be solved through its dual

$$\min_{s \in \mathbb{R}^q} \tilde{q}_f^*(s) + \tilde{q}_r^*(-\nabla \psi(w)s) \tag{1}$$

which amounts to a quadratic problem in q dimensions.

2. (1) can be solved by 2q + 1 calls to auto-diff. oracle.

Gauss-Newton by automatic differentiation

Definition

An automatic differentiation oracle is any procedure that, given a differentiable chain of layers $\psi: \mathbb{R}^p \to \mathbb{R}^q$ and $w \in \mathbb{R}^p$ computes

$$s \to \nabla \psi(w)s$$
 for any $s \in \mathbb{R}^q$.

Proposition

A Gauss-Newton-step for convex f and r

1. can be solved through its dual

$$\min_{s \in \mathbb{R}^q} \tilde{q}_f^*(s) + \tilde{q}_r^*(-\nabla \psi(w)s) \tag{1}$$

which amounts to a quadratic problem in q dimensions.

- 2. (1) can be solved by 2q + 1 calls to auto-diff. oracle.
- ightarrow Simplifies Kronecker Factorization [Martens and Grosse, 2015] and further references that decompose matrices rather than the step
- → Also observed by [Ren and Goldarb, 2019]

Plan

Oracle complexity

Smoothness computations

Applications

Generic recursive smoothness bounds

Proposition

Given a chain ψ of k layers by layers ϕ_l , that are ℓ_{ϕ_l} Lipschitz-continuous and L_{ϕ_l} smooth,

(i) An estimate of the Lipschitz-continuity of the chain ψ is given by $\ell_{\psi} = \ell_k$, where for $l \in \{1, ..., k\}$,

$$\ell_I = \ell_{\phi_I} + \ell_{I-1}\ell_{\phi_I}, \qquad \ell_0 = 0.$$

(ii) An estimate of the smoothness of the chain ψ is given by $L_{\psi} = L_k$, where for $l \in \{1, ..., k\}$,

$$L_I = L_{I-1}\ell_{\phi_I} + L_{\phi_I}(1+\ell_{I-1})^2, \qquad L_0 = 0.$$

Generic recursive smoothness bounds

Proposition

Given a chain ψ of k layers by layers ϕ_l , that are ℓ_{ϕ_l} Lipschitz-continuous and L_{ϕ_l} smooth,

(i) An estimate of the Lipschitz-continuity of the chain ψ is given by $\ell_{\psi} = \ell_k$, where for $l \in \{1, ..., k\}$,

$$\ell_I = \ell_{\phi_I} + \ell_{I-1}\ell_{\phi_I}, \qquad \ell_0 = 0.$$

(ii) An estimate of the smoothness of the chain ψ is given by $L_{\psi} = L_k$, where for $l \in \{1, ..., k\}$,

$$L_{I} = L_{I-1}\ell_{\phi_{I}} + L_{\phi_{I}}(1 + \ell_{I-1})^{2}, \qquad L_{0} = 0.$$

Problem: Layers of deep neural networks are neither Lipschitz continuous nor smooth, needs to dwell into specific structure.

Smoothness details

Layers of deep neural network read

$$\phi_I(v_I,z_{I-1})=a_I\big(b_I(v_I,z_{I-1})\big)$$

where

- \triangleright b_l is linear in v_l , affine in z_{l-1} ,
- ▶ a₁ is non-linear, defined by an element-wise application of an activation function, potentially followed by a pooling operation

Smoothness details

Layers of deep neural network read

$$\phi_I(v_I,z_{I-1})=a_I\big(b_I(v_I,z_{I-1})\big)$$

where

- \triangleright b_l is linear in v_l , affine in z_{l-1} ,
- a_l is non-linear, defined by an element-wise application of an activation function, potentially followed by a pooling operation

Examples:

► Fully connected layer

$$Z_{l} = V_{l}^{\top} Z_{l-1} + \nu_{l} \mathbf{1}_{m}^{\top}$$

- $z_I = \text{Vect}(Z_I)$, $v_I = \text{Vect}((V_I^\top, \nu_I)^\top)$,
- $b_l(v_l, z_{l-1}) = \operatorname{Vect}(V_l^\top Z_{l-1}) + \operatorname{Vect}(v_l \mathbf{1}_m^\top)$

Smoothness details

Layers of deep neural network read

$$\phi_I(v_I,z_{I-1})=a_I\big(b_I(v_I,z_{I-1})\big)$$

where

- \triangleright b_l is linear in v_l , affine in z_{l-1} ,
- a_l is non-linear, defined by an element-wise application of an activation function, potentially followed by a pooling operation

Examples:

► Fully connected layer

$$Z_{l} = V_{l}^{\top} Z_{l-1} + \nu_{l} \mathbf{1}_{m}^{\top}$$

- $z_I = \operatorname{Vect}(Z_I)$, $v_I = \operatorname{Vect}((V_I^\top, \nu_I)^\top)$,
- $b_l(v_l, z_{l-1}) = \operatorname{Vect}(V_l^\top Z_{l-1}) + \operatorname{Vect}(v_l \mathbf{1}_m^\top)$
- Applies also to convolutional layers with vectorized images

Recursive smoothness bound for deep networks

Proposition

For a chain of layers ψ defined by layers of the form

$$\phi_I(v_I,z_{I-1})=a_I\big(b_I(v_I,z_{I-1})\big)$$

the boundedness, Lipschitz continuity and smoothness of ψ on a bounded set can be estimated by a forward pass on the network, given smoothness properties of each layer.

Recursive smoothness bound for deep networks

Proposition

For a chain of layers ψ defined by layers of the form

$$\phi_I(v_I,z_{I-1})=a_I\big(b_I(v_I,z_{I-1})\big)$$

the boundedness, Lipschitz continuity and smoothness of ψ on a bounded set can be estimated by a forward pass on the network, given smoothness properties of each layer.

Implementation

- We provide a list of smoothness constants for supervised, unsupervised objectives and various layers.
- ► This can be automatically plugged in an automatic differentiation package as PyTorch or tensor Flow.

Plan

Oracle complexity

Smoothness computations

Applications

VGG Network

Architecture

Benchmark architecture for image classification in 1000 classes, composed of 16 layers:

```
0 x_{i} \in \mathbb{R}^{224 \times 224 \times 3},

1 \phi_{1}(v, z) = a_{\text{ReLu}}(b_{\text{conv}}(v, z))

2 \phi_{2}(v, z) = p_{\text{max}}(a_{\text{ReLu}}(b_{\text{conv}}(v, z)))

:

16 \phi_{16}(v, z) = a_{\text{softmax}}(b_{\text{full}}(v, z) + \tilde{b}_{\text{full}}(v))

17 f(\hat{y}) = \sum_{i=1}^{n} \mathcal{L}_{\log}(\hat{y}_{i}, y_{i})/n
```

VGG Network

Architecture

Benchmark architecture for image classification in 1000 classes, composed of 16 layers:

```
0 x_{i} \in \mathbb{R}^{224 \times 224 \times 3},

1 \phi_{1}(v, z) = a_{\text{ReLu}}(b_{\text{conv}}(v, z))

2 \phi_{2}(v, z) = p_{\text{max}}(a_{\text{ReLu}}(b_{\text{conv}}(v, z)))

:

16 \phi_{16}(v, z) = a_{\text{softmax}}(b_{\text{full}}(v, z) + \tilde{b}_{\text{full}}(v))

17 f(\hat{y}) = \sum_{i=1}^{n} \mathcal{L}_{\log}(\hat{y}_{i}, y_{i})/n
```

Smooth counterpart

Define VGG-smooth by replacing
ReLU→SoftPlus, Max Pooling→Average Pooling
Our computations show

$$\ell_{
m VGG} pprox \ell_{
m VGG-smooth}$$

Introduce batch-normalization as modified layer

$$\phi_I(v_I,z_{I-1}) = a_I \left(b_I(v_I,c_I(z_{I-1})) \right)$$
 where for $z = \text{Vect}(Z)$ with $Z \in \mathbb{R}^{d \times n}$, $c(z) = \tilde{Z}$ defined as
$$(\tilde{Z})_{ij} = \frac{Z_{ij} - \mu_i}{\epsilon + \sigma_i},$$
 with
$$\mu_i = \frac{1}{m} \sum_{i=1}^m Z_{ij}, \quad \sigma_i^2 = \frac{1}{m} \sum_{i=1}^m (Z_{ij} - \mu_i)^2.$$

Compare Lipschitz and smoothness bounds obtained with or without batch-norm on the smoothed VGG architecture.

$$\begin{array}{lll} \text{for} & \epsilon = 10^{-2}, & \begin{array}{c} \ell_{\text{VGG-smooth}} & \leq \ell_{\text{VGG-batch}} \\ L_{\text{VGG-smooth}} & \leq L_{\text{VGG-batch}} \\ \end{array} \\ \text{for} & \epsilon = 10^{2}, & \begin{array}{c} \ell_{\text{VGG-smooth}} & \geq \ell_{\text{VGG-batch}} \\ L_{\text{VGG-smooth}} & \geq L_{\text{VGG-batch}} \\ \end{array} \end{array}$$

Compare Lipschitz and smoothness bounds obtained with or without batch-norm on the smoothed VGG architecture.

$$\begin{array}{lll} \text{for} & \epsilon = 10^{-2}, & & \ell_{\text{VGG-smooth}} & \leq \ell_{\text{VGG-batch}} \\ & L_{\text{VGG-smooth}} & \leq L_{\text{VGG-batch}} \\ & \text{for} & \epsilon = 10^{2}, & & \ell_{\text{VGG-smooth}} & \geq \ell_{\text{VGG-batch}} \\ & L_{\text{VGG-smooth}} & \geq L_{\text{VGG-batch}} \end{array}$$

▶ Corrects "How does batch normalization help optimization?" of [Santurkar et al, 2018] that studies non-Lipschitz-continuous batch-norm ($\epsilon=0$)

Compare Lipschitz and smoothness bounds obtained with or without batch-norm on the smoothed VGG architecture.

$$\begin{array}{lll} \text{for} & \epsilon = 10^{-2}, & \begin{array}{c} \ell_{\text{VGG-smooth}} & \leq \ell_{\text{VGG-batch}} \\ L_{\text{VGG-smooth}} & \leq L_{\text{VGG-batch}} \\ \end{array} \\ \text{for} & \epsilon = 10^{2}, & \begin{array}{c} \ell_{\text{VGG-smooth}} & \geq \ell_{\text{VGG-batch}} \\ L_{\text{VGG-smooth}} & \geq L_{\text{VGG-batch}} \\ \end{array} \end{array}$$

- ▶ Corrects "How does batch normalization help optimization?" of [Santurkar et al, 2018] that studies non-Lipschitz-continuous batch-norm ($\epsilon = 0$)
- ► Our framework can be used to quickly compare architectures given their components in terms of smoothness

Conclusion

Optimization oracles

- Gauss-Newton easily implementable by auto-diff
- Scales as number of classes × batch-size

Smoothness properties

- Automatic framework to compute smoothness properties
- Can be used to design architectures in a principled way

Thank you! Questions?