
Elementary Convergence Guarantees
for Gradient-based Optimization of Deep Networks

Vincent Roulet, Zaid Harchaoui
University of Washington

57th Allerton Conference
on Communication, Control, and Computing

25 Sept. 2019

1 / 18



Overview

How the structure of DNNs impact elementary complexity bounds ?

I in terms of oracle complexity ?
→ paves the way for principled optimization techniques

I in terms of smoothness properties ?
→ helps comparing architectures

2 / 18



Structure of Deep Neural Networks

Training of a deep neural network of k layers reads

min
v1,...,vk

n∑
i=1

fi (z
(i)
k ) +

k∑
l=1

rl(vl)

subject to z
(i)
l = φl(vl , z

(i)
l−1) for l = 1, . . . , k , z

(i)
0 = x (i)

I v1, . . . , vk are the weights of each layer l
I φl denotes the l th layer with input zl−1 and output zl
I f (i)(ŷ) = L(ŷ , y (i)) are losses on the data x (i)

I rl are regularizations

3 / 18



Definition of a chain of layers

Definition
A function ψ : Rp → Rq is a chain of k layers, if it is defined for
w = (v1; . . . ; vk) ∈ Rp with vl ∈ Rπl by

ψ(w) = zk ,

with zl = φl(vl , zl−1) for l = 1, . . . , k , z0 = x ,

where x ∈ Rδ0 and φl : Rπl × Rδl−1 → Rδl .

4 / 18



Generic formulation

The objective reads then

min
w

f (ψ(w)) + r(w)

where f =
∑

i f
(i), r =

∑
l rl , ψ = (ψx(1) ; . . . ;ψx(n)).

Questions:
1. How the structure of ψ is exploited to compute optim. oracles?
2. What smoothness properties can be stated for ψ?
3. How this applies to specific layers used in deep learning?

5 / 18



Plan

Oracle complexity

Smoothness computations

Applications

6 / 18



Oracles definition

Model definitions
Denote the linear approximation of f around x , `f (y ; x)
Denote the quadratic approximation of f around x , qf (y ; x)

Model minimizations
On a point wt , given a step-size γ > 0,
(i) a gradient step is defined as

wt+1 = argmin
w∈Rp

`f ◦ψ(w ;wt) + `r (w ;wt) +
1
2γ
‖w−wt‖22

(ii) a regularized Gauss-Newton step is defined as

wt+1 = argmin
w∈Rp

qf (`ψ(w ;wt);ψ(wt))+qr (w ;wt) +
1
2γ
‖w−wt‖22

7 / 18



Oracles definition

Model definitions
Denote the linear approximation of f around x , `f (y ; x)
Denote the quadratic approximation of f around x , qf (y ; x)

Model minimizations
On a point wt , given a step-size γ > 0,

(i) a gradient step is defined as

wt+1 = argmin
w∈Rp

`f ◦ψ(w ;wt) + `r (w ;wt) +
1
2γ
‖w−wt‖22

(ii) a regularized Gauss-Newton step is defined as

wt+1 = argmin
w∈Rp

qf (`ψ(w ;wt);ψ(wt))+qr (w ;wt) +
1
2γ
‖w−wt‖22

7 / 18



Oracles definition

Model definitions
Denote the linear approximation of f around x , `f (y ; x)
Denote the quadratic approximation of f around x , qf (y ; x)

Model minimizations
On a point wt , given a step-size γ > 0,
(i) a gradient step is defined as

wt+1 = argmin
w∈Rp

`f ◦ψ(w ;wt) + `r (w ;wt) +
1
2γ
‖w−wt‖22

(ii) a regularized Gauss-Newton step is defined as

wt+1 = argmin
w∈Rp

qf (`ψ(w ;wt);ψ(wt))+qr (w ;wt) +
1
2γ
‖w−wt‖22

7 / 18



Oracles definition

Model definitions
Denote the linear approximation of f around x , `f (y ; x)
Denote the quadratic approximation of f around x , qf (y ; x)

Model minimizations
On a point wt , given a step-size γ > 0,
(i) a gradient step is defined as

wt+1 = argmin
w∈Rp

`f ◦ψ(w ;wt) + `r (w ;wt) +
1
2γ
‖w−wt‖22

(ii) a regularized Gauss-Newton step is defined as

wt+1 = argmin
w∈Rp

qf (`ψ(w ;wt);ψ(wt))+qr (w ;wt) +
1
2γ
‖w−wt‖22

7 / 18



Computation by dynamic programming

Proposition
Gradient, Gauss-Newton and Newton steps can be computed by
dynamic programming on the linearized network.

Consequences:
I all those steps have a complexity linear in the depth k ,
I retrieves gradient back-propagation as dynamic programming,
I for Gauss-Newton or Newton still requires a priori inversion of

Hessians of the size of the layers...

8 / 18



Computation by dynamic programming

Proposition
Gradient, Gauss-Newton and Newton steps can be computed by
dynamic programming on the linearized network.

Consequences:

I all those steps have a complexity linear in the depth k ,
I retrieves gradient back-propagation as dynamic programming,
I for Gauss-Newton or Newton still requires a priori inversion of

Hessians of the size of the layers...

8 / 18



Computation by dynamic programming

Proposition
Gradient, Gauss-Newton and Newton steps can be computed by
dynamic programming on the linearized network.

Consequences:
I all those steps have a complexity linear in the depth k ,

I retrieves gradient back-propagation as dynamic programming,
I for Gauss-Newton or Newton still requires a priori inversion of

Hessians of the size of the layers...

8 / 18



Computation by dynamic programming

Proposition
Gradient, Gauss-Newton and Newton steps can be computed by
dynamic programming on the linearized network.

Consequences:
I all those steps have a complexity linear in the depth k ,
I retrieves gradient back-propagation as dynamic programming,

I for Gauss-Newton or Newton still requires a priori inversion of
Hessians of the size of the layers...

8 / 18



Computation by dynamic programming

Proposition
Gradient, Gauss-Newton and Newton steps can be computed by
dynamic programming on the linearized network.

Consequences:
I all those steps have a complexity linear in the depth k ,
I retrieves gradient back-propagation as dynamic programming,
I for Gauss-Newton or Newton still requires a priori inversion of

Hessians of the size of the layers...

8 / 18



Gauss-Newton by automatic differentiation
Definition
An automatic differentiation oracle is any procedure that, given a
differentiable chain of layers ψ : Rp → Rq and w ∈ Rp computes

s → ∇ψ(w)s for any s ∈ Rq.

Proposition
A Gauss-Newton-step for convex f and r

1. can be solved through its dual

min
s∈Rq

q̃?f (s) + q̃?r (−∇ψ(w)s) (1)

which amounts to a quadratic problem in q dimensions.
2. (1) can be solved by 2q + 1 calls to auto-diff. oracle.

→ Simplifies Kronecker Factorization [Martens and Grosse, 2015] and
further references that decompose matrices rather than the step
→ Also observed by [Ren and Goldarb, 2019]

9 / 18



Gauss-Newton by automatic differentiation
Definition
An automatic differentiation oracle is any procedure that, given a
differentiable chain of layers ψ : Rp → Rq and w ∈ Rp computes

s → ∇ψ(w)s for any s ∈ Rq.

Proposition
A Gauss-Newton-step for convex f and r

1. can be solved through its dual

min
s∈Rq

q̃?f (s) + q̃?r (−∇ψ(w)s) (1)

which amounts to a quadratic problem in q dimensions.
2. (1) can be solved by 2q + 1 calls to auto-diff. oracle.

→ Simplifies Kronecker Factorization [Martens and Grosse, 2015] and
further references that decompose matrices rather than the step
→ Also observed by [Ren and Goldarb, 2019]

9 / 18



Gauss-Newton by automatic differentiation
Definition
An automatic differentiation oracle is any procedure that, given a
differentiable chain of layers ψ : Rp → Rq and w ∈ Rp computes

s → ∇ψ(w)s for any s ∈ Rq.

Proposition
A Gauss-Newton-step for convex f and r

1. can be solved through its dual

min
s∈Rq

q̃?f (s) + q̃?r (−∇ψ(w)s) (1)

which amounts to a quadratic problem in q dimensions.
2. (1) can be solved by 2q + 1 calls to auto-diff. oracle.

→ Simplifies Kronecker Factorization [Martens and Grosse, 2015] and
further references that decompose matrices rather than the step
→ Also observed by [Ren and Goldarb, 2019]

9 / 18



Plan

Oracle complexity

Smoothness computations

Applications

10 / 18



Generic recursive smoothness bounds

Proposition
Given a chain ψ of k layers by layers φl , that are `φl
Lipschitz-continuous and Lφl smooth,
(i) An estimate of the Lipschitz-continuity of the chain ψ is given

by `ψ = `k , where for l ∈ {1, . . . , k},
`l = `φl + `l−1`φl , `0 = 0.

(ii) An estimate of the smoothness of the chain ψ is given by
Lψ = Lk , where for l ∈ {1, . . . , k},

Ll = Ll−1`φl + Lφl (1+ `l−1)
2, L0 = 0.

Problem: Layers of deep neural networks are neither Lipschitz
continuous nor smooth, needs to dwell into specific structure.

11 / 18



Generic recursive smoothness bounds

Proposition
Given a chain ψ of k layers by layers φl , that are `φl
Lipschitz-continuous and Lφl smooth,
(i) An estimate of the Lipschitz-continuity of the chain ψ is given

by `ψ = `k , where for l ∈ {1, . . . , k},
`l = `φl + `l−1`φl , `0 = 0.

(ii) An estimate of the smoothness of the chain ψ is given by
Lψ = Lk , where for l ∈ {1, . . . , k},

Ll = Ll−1`φl + Lφl (1+ `l−1)
2, L0 = 0.

Problem: Layers of deep neural networks are neither Lipschitz
continuous nor smooth, needs to dwell into specific structure.

11 / 18



Smoothness details
Layers of deep neural network read

φl(vl , zl−1) = al
(
bl(vl , zl−1)

)
where

I bl is linear in vl , affine in zl−1,
I al is non-linear, defined by an element-wise application of an

activation function, potentially followed by a pooling operation

Examples:

I Fully connected layer

Zl = V>l Zl−1 + νl 1>m

- zl = Vect(Zl), vl = Vect((V>l , νl)
>),

- bl(vl , zl−1) = Vect(V>l Zl−1) + Vect(νl 1>m)
I Applies also to convolutional layers with vectorized images

12 / 18



Smoothness details
Layers of deep neural network read

φl(vl , zl−1) = al
(
bl(vl , zl−1)

)
where

I bl is linear in vl , affine in zl−1,
I al is non-linear, defined by an element-wise application of an

activation function, potentially followed by a pooling operation

Examples:

I Fully connected layer

Zl = V>l Zl−1 + νl 1>m

- zl = Vect(Zl), vl = Vect((V>l , νl)
>),

- bl(vl , zl−1) = Vect(V>l Zl−1) + Vect(νl 1>m)

I Applies also to convolutional layers with vectorized images

12 / 18



Smoothness details
Layers of deep neural network read

φl(vl , zl−1) = al
(
bl(vl , zl−1)

)
where

I bl is linear in vl , affine in zl−1,
I al is non-linear, defined by an element-wise application of an

activation function, potentially followed by a pooling operation

Examples:

I Fully connected layer

Zl = V>l Zl−1 + νl 1>m

- zl = Vect(Zl), vl = Vect((V>l , νl)
>),

- bl(vl , zl−1) = Vect(V>l Zl−1) + Vect(νl 1>m)
I Applies also to convolutional layers with vectorized images

12 / 18



Recursive smoothness bound for deep networks

Proposition
For a chain of layers ψ defined by layers of the form

φl(vl , zl−1) = al
(
bl(vl , zl−1)

)
the boundedness, Lipschitz continuity and smoothness of ψ on a
bounded set can be estimated by a forward pass on the network,
given smoothness properties of each layer.

Implementation
I We provide a list of smoothness constants for supervised,

unsupervised objectives and various layers.
I This can be automatically plugged in an automatic

differentiation package as PyTorch or tensor Flow.

13 / 18



Recursive smoothness bound for deep networks

Proposition
For a chain of layers ψ defined by layers of the form

φl(vl , zl−1) = al
(
bl(vl , zl−1)

)
the boundedness, Lipschitz continuity and smoothness of ψ on a
bounded set can be estimated by a forward pass on the network,
given smoothness properties of each layer.

Implementation
I We provide a list of smoothness constants for supervised,

unsupervised objectives and various layers.
I This can be automatically plugged in an automatic

differentiation package as PyTorch or tensor Flow.

13 / 18



Plan

Oracle complexity

Smoothness computations

Applications

14 / 18



VGG Network
Architecture
Benchmark architecture for image classification in 1000 classes,
composed of 16 layers:

0 xi ∈ R224×224×3,
1 φ1(v , z) = aReLu(bconv(v , z))

2 φ2(v , z) = pmax(aReLu(bconv(v , z)))
...

16 φ16(v , z) = asoftmax(bfull(v , z) + b̃full(v))

17 f (ŷ) =
∑n

i=1 Llog(ŷi , yi )/n

Smooth counterpart
Define VGG-smooth by replacing

ReLU→SoftPlus, Max Pooling→Average Pooling
Our computations show

`VGG ≈ `VGG-smooth

15 / 18



VGG Network
Architecture
Benchmark architecture for image classification in 1000 classes,
composed of 16 layers:

0 xi ∈ R224×224×3,
1 φ1(v , z) = aReLu(bconv(v , z))

2 φ2(v , z) = pmax(aReLu(bconv(v , z)))
...

16 φ16(v , z) = asoftmax(bfull(v , z) + b̃full(v))

17 f (ŷ) =
∑n

i=1 Llog(ŷi , yi )/n

Smooth counterpart
Define VGG-smooth by replacing

ReLU→SoftPlus, Max Pooling→Average Pooling
Our computations show

`VGG ≈ `VGG-smooth

15 / 18



Batch-normalization effect

Introduce batch-normalization as modified layer

φl(vl , zl−1) = al
(
bl(vl , cl(zl−1))

)
where for z = Vect(Z ) with Z ∈ Rd×n, c(z) = Z̃ defined as

(Z̃ )ij =
Zij − µi
ε+ σi

,

with µi =
1
m

m∑
j=1

Zij , σ2
i =

1
m

m∑
j=1

(Zij − µi )2.

16 / 18



Batch-normalization effect

Compare Lipschitz and smoothness bounds obtained with or
without batch-norm on the smoothed VGG architecture.

for ε = 10−2,
`VGG-smooth ≤ `VGG-batch
LVGG-smooth ≤ LVGG-batch

for ε = 102,
`VGG-smooth ≥ `VGG-batch
LVGG-smooth ≥ LVGG-batch

I Corrects "How does batch normalization help optimization?"
of [Santurkar et al, 2018] that studies non-Lipschitz-continuous
batch-norm (ε = 0)

I Our framework can be used to quickly compare architectures
given their components in terms of smoothness

17 / 18



Batch-normalization effect

Compare Lipschitz and smoothness bounds obtained with or
without batch-norm on the smoothed VGG architecture.

for ε = 10−2,
`VGG-smooth ≤ `VGG-batch
LVGG-smooth ≤ LVGG-batch

for ε = 102,
`VGG-smooth ≥ `VGG-batch
LVGG-smooth ≥ LVGG-batch

I Corrects "How does batch normalization help optimization?"
of [Santurkar et al, 2018] that studies non-Lipschitz-continuous
batch-norm (ε = 0)

I Our framework can be used to quickly compare architectures
given their components in terms of smoothness

17 / 18



Batch-normalization effect

Compare Lipschitz and smoothness bounds obtained with or
without batch-norm on the smoothed VGG architecture.

for ε = 10−2,
`VGG-smooth ≤ `VGG-batch
LVGG-smooth ≤ LVGG-batch

for ε = 102,
`VGG-smooth ≥ `VGG-batch
LVGG-smooth ≥ LVGG-batch

I Corrects "How does batch normalization help optimization?"
of [Santurkar et al, 2018] that studies non-Lipschitz-continuous
batch-norm (ε = 0)

I Our framework can be used to quickly compare architectures
given their components in terms of smoothness

17 / 18



Conclusion

Optimization oracles

I Gauss-Newton easily implementable by auto-diff
I Scales as number of classes × batch-size

Smoothness properties
I Automatic framework to compute smoothness properties
I Can be used to design architectures in a principled way

Thank you ! Questions ?

18 / 18


	Oracle complexity
	Smoothness computations
	Applications

