Elementary Convergence Guarantees
for Gradient-based Optimization of Deep Networks

Vincent Roulet, Zaid Harchaoui
University of Washington

57th Allerton Conference _
on Communication, Control, and Computing

25 Sept. 2019

UNIVERSITY of @

WASHINGTON

1/18

Overview

How the structure of DNNs impact elementary complexity bounds 7

» in terms of oracle complexity 7
— paves the way for principled optimization techniques

> in terms of smoothness properties ?
— helps comparing architectures

2/18

Structure of Deep Neural Networks

Training of a deep neural network of k layers reads

subject to z, = ¢1(vy, ,(')1) fori=1,...,k, z(()i) = x()

> vi,..., vy are the weights of each layer /

v

¢, denotes the /" layer with input z_; and output z
fF()(9) = L(9,y") are losses on the data x()

r; are regularizations

v

v

3/18

Definition of a chain of layers

Definition
A function 1) : RP — R9 is a chain of k layers, if it is defined for
w = (vi;...;v) € RP with vy € R™ by

Y(w) = z,

with z=¢)(vy,z—1) forl=1,... k, 20 = X,

where x € R% and ¢ : R™ x R¥-1 — RY

4/18

Generic formulation

The objective reads then
mvin f(¥(w)) + r(w)

Where f:ZI f(i), r:Z[r, ,l/]: (wx(l)i’wx("))

Questions:
1. How the structure of 1) is exploited to compute optim. oracles?
2. What smoothness properties can be stated for 1)?

3. How this applies to specific layers used in deep learning?

5/18

Plan

Oracle complexity

6/18

Oracles definition
Model definitions

Denote the linear approximation of f around x, /¢(y; x)
Denote the quadratic approximation of f around x, g¢(y; x)

7/18

Oracles definition

Model definitions
Denote the linear approximation of f around x, /¢(y; x)
Denote the quadratic approximation of f around x, g¢(y; x)

Model minimizations
On a point wg, given a step-size v > 0,

7/18

Oracles definition

Model definitions
Denote the linear approximation of f around x, /¢(y; x)
Denote the quadratic approximation of f around x, g¢(y; x)

Model minimizations
On a point wg, given a step-size v > 0,

(i) a gradient step is defined as

o 1
wei1 = arg min (o (Wi we) + (Wi we) + ol w—w[3
weRP Y

7/18

Oracles definition

Model definitions
Denote the linear approximation of f around x, /¢(y; x)
Denote the quadratic approximation of f around x, g¢(y; x)

Model minimizations
On a point wg, given a step-size v > 0,

(i) a gradient step is defined as

o 1
wei1 = arg min (o (Wi we) + (Wi we) + ol w—w[3
weRP Y

(i) a regularized Gauss-Newton step is defined as

] 1
Wiyl = argmin Qf(fp(W? wt); (we))+qr(w; we) + 7||W—Wt\|%
weRP Y

7/18

Computation by dynamic programming

Proposition
Gradient, Gauss-Newton and Newton steps can be computed by
dynamic programming on the linearized network.

8/18

Computation by dynamic programming

Proposition
Gradient, Gauss-Newton and Newton steps can be computed by
dynamic programming on the linearized network.

Consequences:

8/18

Computation by dynamic programming

Proposition
Gradient, Gauss-Newton and Newton steps can be computed by
dynamic programming on the linearized network.

Consequences:

» all those steps have a complexity linear in the depth k,

8/18

Computation by dynamic programming

Proposition
Gradient, Gauss-Newton and Newton steps can be computed by
dynamic programming on the linearized network.

Consequences:
» all those steps have a complexity linear in the depth k,

> retrieves gradient back-propagation as dynamic programming,

8/18

Computation by dynamic programming

Proposition
Gradient, Gauss-Newton and Newton steps can be computed by
dynamic programming on the linearized network.

Consequences:
» all those steps have a complexity linear in the depth k,
> retrieves gradient back-propagation as dynamic programming,

» for Gauss-Newton or Newton still requires a priori inversion of
Hessians of the size of the layers...

8/18

Gauss-Newton by automatic differentiation

Definition
An automatic differentiation oracle is any procedure that, given a
differentiable chain of layers) : RP — R9 and w € RP computes

s — Vip(w)s for any s € R9.

9/18

Gauss-Newton by automatic differentiation

Definition
An automatic differentiation oracle is any procedure that, given a
differentiable chain of layers) : RP — R9 and w € RP computes

s — Vip(w)s for any s € R9.

Proposition
A Gauss-Newton-step for convex f and r

1. can be solved through its dual
min G7(s) + 47 (= Vi (w)s) (1)
se€Rd

which amounts to a quadratic problem in q dimensions.
2. (1) can be solved by 2q + 1 calls to auto-diff. oracle.

9/18

Gauss-Newton by automatic differentiation

Definition
An automatic differentiation oracle is any procedure that, given a
differentiable chain of layers) : RP — R9 and w € RP computes

s — Vip(w)s for any s € R9.

Proposition
A Gauss-Newton-step for convex f and r

1. can be solved through its dual
min G7(s) + 47 (= Vi (w)s) (1)
se€Rd

which amounts to a quadratic problem in q dimensions.
2. (1) can be solved by 2q + 1 calls to auto-diff. oracle.
— Simplifies Kronecker Factorization [Martens and Grosse, 2015] and

further references that decompose matrices rather than the step
— Also observed by [Ren and Goldarb, 2019]

9/18

Plan

Smoothness computations

10/18

Generic recursive smoothness bounds

Proposition

Given a chain v of k layers by layers ¢,, that are {4,
Lipschitz-continuous and Ly, smooth,

(i) An estimate of the Lipschitz-continuity of the chain v is given
by €y, = Ly, where for | € {1,..., k},

= g(;s, + 51_1&1),, o = 0.

(i) An estimate of the smoothness of the chain 1) is given by
Ly = Ly, where for | € {1,..., k},

Ly = Li—1ly, + Lo, (1 + £1-1)*, Lo =0.

11/18

Generic recursive smoothness bounds

Proposition

Given a chain v of k layers by layers ¢,, that are {4,
Lipschitz-continuous and Ly, smooth,

(i) An estimate of the Lipschitz-continuity of the chain v is given
by €y, = Ly, where for | € {1,..., k},

= €¢, + 51_1&1),, o = 0.

(i) An estimate of the smoothness of the chain 1) is given by
Ly = Ly, where for | € {1,...,k},

Ly = Li—1ly, + Lo, (1 + £1-1)*, Lo =0.

Problem: Layers of deep neural networks are neither Lipschitz
continuous nor smooth, needs to dwell into specific structure.

11/18

Smoothness details

Layers of deep neural network read

oi1(vi,z1-1) = a;(by(vi, z1-1))

where
» by is linear in v, affine in z,_1,

» 3, is non-linear, defined by an element-wise application of an
activation function, potentially followed by a pooling operation

12/18

Smoothness details

Layers of deep neural network read

oi1(vi,z1-1) = a;(by(vi, z1-1))

where
» by is linear in v, affine in z,_1,

» 3, is non-linear, defined by an element-wise application of an
activation function, potentially followed by a pooling operation

Examples:
» Fully connected layer
Z=V'Z_1+uy1}

-z = Vect(Z,), v, = Vect((V,T, l//)T),
- b/(V/, 2171) = Vect(\/,TZ,,l) + Vect(l/, 1;)

12/18

Smoothness details

Layers of deep neural network read

oi1(vi,z1-1) = a;(by(vi, z1-1))

where
» by is linear in v, affine in z,_1,

» 3, is non-linear, defined by an element-wise application of an
activation function, potentially followed by a pooling operation

Examples:
» Fully connected layer
Z=V'Z_1+uy1}

-z = Vect(Z,), v, = Vect((V,T, l//)T),
- b/(V/, 2171) = Vect(\/,TZ,,l) + Vect(l/, 1;)

» Applies also to convolutional layers with vectorized images

12/18

Recursive smoothness bound for deep networks

Proposition
For a chain of layers 1) defined by layers of the form
o1(vi, z1-1) = a;(by(vi, z1-1))

the boundedness, Lipschitz continuity and smoothness of 1) on a
bounded set can be estimated by a forward pass on the network,
given smoothness properties of each layer.

13/18

Recursive smoothness bound for deep networks

Proposition
For a chain of layers 1) defined by layers of the form

oi1(vi, z1-1) = aj(by(vi, z1-1))

the boundedness, Lipschitz continuity and smoothness of 1) on a
bounded set can be estimated by a forward pass on the network,
given smoothness properties of each layer.

Implementation

» We provide a list of smoothness constants for supervised,
unsupervised objectives and various layers.

» This can be automatically plugged in an automatic
differentiation package as PyTorch or tensor Flow.

13/18

Plan

Applications

14/18

VGG Network

Architecture
Benchmark architecture for image classification in 1000 classes,
composed of 16 layers:

0 x; € R224x224x3

1 (bl(V,Z) = aReLu(bconv(V7z))
2 ¢2(V,Z) = pmax(aReLu(bconV(V7 Z)))

16 $16(V,2) = asoftmax(bralt (v, 2) + bran(v))
17 £(9) = 2211 Liog(Fi5 vi)/n

15/18

VGG Network

Architecture
Benchmark architecture for image classification in 1000 classes,
composed of 16 layers:

0 x; € R224x224x3

1 (bl(V,Z) = aReLu(bconv(V7z))
2 ¢2(V,Z) = pmax(aReLu(bconV(V7 Z)))

16 $16(V,2) = asoftmax(bralt (v, 2) + bran(v))
17 £(9) = 2211 Liog(Fi5 vi)/n

Smooth counterpart
Define VGG-smooth by replacing

ReLU—SoftPlus, Max Pooling— Average Pooling
Our computations show

GG ~ IvGG-smooth

15/18

Batch-normalization effect

Introduce batch-normalization as modified layer
o1(vi, z1-1) = ay(by(vi, ci(z1-1)))

where for z = Vect(Z) with Z € R¥*", ¢(z) = Z defined as

5 Z/ Hi
7)==
()U €+ o; ’
1 & 1 &
) 2 2
with Mizmzlzib o :mzl(zij—ui) :
j= j=

16/18

Batch-normalization effect

Compare Lipschitz and smoothness bounds obtained with or

without batch-norm on the smoothed VGG architecture.

-2 EVGG—smooth
for €e=10"", !
VGG-smooth

2 {VGG-smooth
for €=10°, ! smoo
VGG-smooth

< lvGG-batch
< LyGG-batch

> l\GG-batch
> LyGG-batch

17/18

Batch-normalization effect

Compare Lipschitz and smoothness bounds obtained with or
without batch-norm on the smoothed VGG architecture.

for ¢ —10-2 vGG-smooth < #VGG-batch
- ’ L <L
VGG-smooth > LVGG-batch

for ¢ — 102 {vGG-smooth = LvGG-batch
’ LvGG-smooth = LvGG-batch

» Corrects "How does batch normalization help optimization?"

of [Santurkar et al, 2018] that studies non-Lipschitz-continuous
batch-norm (e = 0)

17/18

Batch-normalization effect

Compare Lipschitz and smoothness bounds obtained with or
without batch-norm on the smoothed VGG architecture.

for ¢ —10-2 vGG-smooth < #VGG-batch
- ’ L <L
VGG-smooth > LVGG-batch

for ¢ — 102 {vGG-smooth = LvGG-batch
’ LvGG-smooth = LvGG-batch

» Corrects "How does batch normalization help optimization?"
of [Santurkar et al, 2018] that studies non-Lipschitz-continuous
batch-norm (e = 0)

» Our framework can be used to quickly compare architectures
given their components in terms of smoothness

17/18

Conclusion

Optimization oracles

» Gauss-Newton easily implementable by auto-diff

» Scales as number of classes x batch-size

Smoothness properties
» Automatic framework to compute smoothness properties

» Can be used to design architectures in a principled way

Thank you I Questions 7

18/18

	Oracle complexity
	Smoothness computations
	Applications

