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Motivation

Goal :

v

minimize f(x), f:R” — R cvx

v

Some algorithms use past information to build next iterate
Accelerated Gradient Method

Universal Fast Gradient Method

Quasi-Newton methods

vV vy vy

v

Idea : Refresh algorithms when past information is " no longer
relevant”

» Doesn't make any sense for gradient descent with line search
for example



How to characterize past information ?
» Take an algorithm A that outputs points x = A(xo, 6, t),
where
> Xxg is the initial point,
> 0 are parameters of the algorithm
> t is the number of iterations.

» Look at the convergence rate

fx) - £+ < L0 X7
< £

where

» d(xg, X*) is the Euclidean distance from xg to the set of
minimizers X*
» c,p,q are constants depending on the problem

» Bound increases with d(xp, X'™), intuition :
xp close to X* — good initialization so fast convergence

» Exploit information on d(xp, X*) ?
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Sharpness

Definition
A function f satisfies the sharpness property on a set K if there
exists r > 1, u >0, s.t.

pd(x, X*)" < f(x)—f*, forevery x € K (Sharp)

Examples
» Strongly convex function (r = 2)
» Gradient dominated functions (r = 2)
» Matrix game problems like min, max, x" Ay (r = 1)
» Real analytic functions (r unknown)

» Subanalytic functions (r unknown)



Sharpness for real analytic function

For f real analytic, x € R and x* € X*,

20 F(K) (x*
Fx)—F=>_ d k(! J(x 3

k=q

where g > 0 is the smallest coefficient for which £(9)(x*) # 0.
There is an interval V around x* s.t.

(@) (x*
LPPE) )9 < () — £
2 4!
f(q)(x*)

Setting x* = lNx~(x) this yields (Sharp) on V with g and % 7




Sharpness for subanalytic functions

tojasevicz inequality
» Sharpness property is known to be satisfied for real analytic
functions as the tojasevicz inequality [Lojasevicz 1963]

» Generalized recently to broad class of non-smooth convex
functions called subanalytic [Bolte et al 2007].

» Subanalytic functions are functions whose epigraph can be
expressed as a semi-analytic manifold.

» Proofs rely on topological arguments so (r, ut) are mostly
unknown.



Smoothness

Definition
A function f satisfies the smoothness property on a set J if there
exists s € [1,2], L > 0 s.t.

IVF(x) = V()2 < Llx—yl5%, for every x,y € J (Smooth)

Examples
» Non-smooth (s = 1)
» Smooth (s = 2)
» Holder smooth (s € (1,2))



Sharpness and smoothness

If f satisfies (Smooth), for every x € R” and y = lNMx«(x),
T L s * L *\S
Fx) < FY) + VAT (=) + Clix = yl3 = £+ Sd( X7)

Combined with (Sharp), pud(x, X*)" < f(x) — f*, this yields

SH

O<L

< d(ij*)sfr
Taking x — X*, necessarily

s<r

Moreover if s < r, last inequality can only be valid on a
bounded set, either smoothness or sharpness or both are not valid
in the whole space.



Condition numbers

We denote
S
T=1-—-
r

a condition number on the ratio of powers, s.t.
0<r«1

and .
K = LE/M7

a generalized condition number.
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General strategy

» Take an algorithm A that outputs points x = A(xp, 6, t),
where

> Xg is the initial point,
> 0 are parameters of the algorithm
» t is the number of iterations

» Look at the convergence rate if f satisfies (Sharp)

Flx) — £+ < CA00XT)T
< 20

_ c(flo) — £
< )

» Given v > 0, compute analytically t s.t.
f(x)—f*<e 7(f(x)— ")

> lterate and compute total complexity



General formulation

Given an algorithm A that outputs points x = A(xp, 0, t)

Scheduled restart schemes :

Inputs: xp, sequence 0y, sequence ty
for k=1...R do
Xk = .A(Xk_l, Oy, i‘k)
end for
Output: X = xgr




General analysis

Lemma
Given ~v > 0, suppose setting

ty=Ce®*,  withC >0, a>0,
ensures
f(xk) — F* < Me 7k, with M > 0.
Writing N = Zle ty the total number of iterations, we get
f(R) — f* < Mexp(—yCIN), when o = 0,
M

f(R)—f*< —~, whena >0.
(ve=*C~IN + 1)




Smooth convex problems

» If fis cvx and smooth (s = 2, L), an optimal algorithm is the
Accelerated Gradient Acc.

» Given xp, it outputs after t iterations, a point x = Acc(xo, t),

s.t.
f(x) — F* < %d(xo,X*)2,

where c¢ is a universal constant.

» Assume that f satisfies (Sharp) with (r, ) on a set K
pd(x, X*)" < f(x)—f*, forevery x € K

» Assume we are given xp € R”, s.t. {x, f(x) < f(x)} C K.



Optimal scheme

Proposition 1st part

Assume f cvx, smooth (s = 2, L) and sharp (r, i) on a set K.
Run scheduled restarts of Acc with

ty = CT,H eTk

Crw = e (ck)2(Fx0) — F¥) 7%

)

Then for every outer iteration k > 0,

fxe) — F* < e 25 (f(x0) — F*).



Optimal scheme

Proposition
Denote N the total number of iterations at the output X, then,
when 7 =0,

f(X)— " <exp (—2efl(cn)*%N> (f(xo)—f")=0 <exp(—/<f%N)> 7

while, when 7 > 0,

f(x)—f* < flo) = 7 > = O(F&%N_7>,

(re2(F(x0) = F)E(cr) N +1)7

Note : Optimal for this class of problems [Optimal methods of
smooth convex optimization, A. Nemirovski, Y. Nesterov 1985]



Adaptive scheme

> In practice (r, p) are unknown

> Given a fixed total number of iterations N, run following
schemes

S;j 1 Scheduled restart with t; = C;e"i%, where C; = 2/ and Tj =2

with i € [1,..., [logo N|], j € [0,..., [logy N]
» Optimal bounds up to constant factor 4

» Has a complexity log,(N)? higher than running N iterations in
the optimal scheme

» Adaptive algorithm



Non-smooth or Holder smooth convex problems

» If f is cvx, satisfies (Smooth) with (s, L) on a set J, i.e.

IVF(x) = VF(y)ll2 < Llix — y[l§7%,  for every x,y € J,
(Smooth)
an optimal algorithm is the Fast Universal Gradient method U
by Nesterov, 2015.

» Given ¢, xp, it outputs, after t iterations, a point
x =U(xp, €, t) s.t.

2
Lsd X*)2
f(X)_f*§f+#f
2 it 2 2
where
3s—2
p:

is the optimal rate for this class of functions.



Holder smooth convex problems strategy

» Assume that we have access to ¢y > f(xp) — f* for a given

xg € R”
> Given v > 0 run scheduled restarts with sequence of target
accuracies
€} = ef’ykeo

» Choose tj to ensure

f(xk) = <ex



Optimal scheme

Proposition 1st part

Assume f cvx, Holder smooth (s, L) and sharp (r, i) on a set K.
Run scheduled restarts of U/ with

€} = e_pkéo ty = CT,K’peTk
T

7 (ck) 2 eg

Crnp=e
Then for every outer iteration k > 0,

f(Xk) —f* < eipkEO.



Optimal scheme

Proposition 2nd part

Denote N the total number of iterations at the output X, then,
when 7 = 0,

f(R) — f* <exp (—pe_l(cn)_iN) e =0 (eXp(—K_ﬁN)) ;

while, when 7 > 0,

F(%) - F* < = ;=0 (xEN7),
(Te_l(CFL);PESN + 1> ’

Note : Optimal for this class of problems [Optimal methods of
smooth convex optimization, A. Nemirovski, Y. Nesterov 1985]



General convex problems

v

3 parameters for the schedule v, C, «

v

Grid search inefficient if r or s unknown

v

Otherwise grid search on C works

Can be used for
— non-smooth (s = 1), gradient dominated functions (r = 2)
— non-smooth (s = 1), sharp functions (r = 1)

v



Plan

Restarts with termination criterion



Strategy

» Assume f* known (e.g. zero sum-game matrix problem,
projection a convex set...)

» Given an accuracy ¢, denote t. the number of iterations to
observe that x = U(xo, €, t) satisfies

fx) - f* < e

— Stop when target accuracy reached
— Restart with a reduced target accuracy



Formulation

Given the Fast Universal Gradient method I/ that outputs
x =U(xp, €, t)

Restarts with termination criterion :

Inputs: xg, v, f*
€0 = f(xo) — F*
for k=1...Rdo
€ =€ Tex_q
Xi = U(kal, €k, tek)
end for
Output: X = xgr




Restarts with termination criterion

Assume f cvx, Holder smooth (s, L) and sharp (r, ) on a set K.
Run restarts with termination criterion with v = p.

Denote N the total number of iterations at the output X, then,
when 7 =0,

f(R) — f* < exp (—pe_l(cn)_iN) e =20 (eXp(—K_iN)) ;

while, when 7 > 0,

F(R) — F* < = =0 (w=N7),
(Te—l(cm);ﬂeé’N + 1)

A

Note : Restarts robust to the choice of ~.
Taking v =1 is optimal up to a small constant factor.



Plan
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General setting

» Extension to
minimize f(x) = ¢(x) + g(x)

where
> ¢ satisfies (Smooth) w.r.t a generic norm ||.||.

[VF(x) = VE(y)| < Llx—y[]*"", forevery x,y € J,
(Smooth)
» we have access to a prox function h 1-strongly convex w.r.t.
|I|| defining a Bregman divergence

Dy(z; x) = h(z) — h(x) — Vh(x)T(z = x)
» g is simple in the sense that we can easily solve
miny "z 4 g(z) + ADy(z; x)

» Covers a whole class f of problems such as sparse or
constrained.

» Need an appropriate notion of sharpness w.r.t ||.||.



Relative sharpness

Definition

A convex function f is called relatively sharp with respect to a
strictly convex function h on a set K C dom(f) if there exists
r>1, > 0 such that

2uDp(x; X*)2 < f(x) — f* forany x € K (Relative Sharpness)

where Dp(x; X*) = ming=cx+ Dp(x; x*) and Dy, is the Bregman
divergence associated to h.
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Numerical Experiments

» Classification problems on UCI Sonar data set with various
losses.

» Check convergence of best method found by grid search Adap
» Compare against
» Gradient descent Grad
> Accelerated gradient descent Acc
» Restarts enforcing monotonicity Mono,
i.e., when f(xxy1) < f(xx) in the inner iterations.



Least Squares and Logistic

10° 100
~—Grad — Grad
—Acc —Acc
=—Mono —Mono
—Adap 1072 — Adap
T 5 -
z " 3
107
10°10 108
200 400 600 800 0

0 2000 4000
Number of iterations

Figure: Least squares loss (left) and Logistic loss (right).
Large dots represent restart iterations
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Lasso and Dual SVM
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Figure: Lasso (left) and dual SVM (right) problems.
Large dots represent restart iterations
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Contributions

v

Open the black box model by adding a generic assumption on
the behavior of the function around minimizers

v

Convergence analysis of restart schemes

v

Optimal schemes for smooth, Holder smooth, non-smooth
convex optimization

v

Adaptive scheme for smooth convex optimization



Future work

Sharpness analysis

» Sharpness reads
pd(x, X*)" < f(x) —f*, forevery x € K

> 1 depends generally on K, thorough analysis in

From error bounds to the complexity of first-order descent methods
for convex functions, J. Bote et al, 201

» Local adaptivity of restart schemes ?

» If * known, restart with termination criterion is adaptive.
— Approximate f* 7

Practical algorithm
» Grid search shows robustness but not very practical

» Restarting from a combination of points, see
Restarting accelerated gradient methods with a rough strong
convexity estimate, O. Fercoq, Z. Qu, 2016



Thanks !

Questions ?
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