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Motivation

I Goal :
minimize f (x), f : Rn → R cvx

I Some algorithms use past information to build next iterate
I Accelerated Gradient Method
I Universal Fast Gradient Method
I Quasi-Newton methods
I ...

I Idea : Refresh algorithms when past information is ”no longer
relevant”

I Doesn’t make any sense for gradient descent with line search
for example



How to characterize past information ?
I Take an algorithm A that outputs points x = A(x0, θ, t),

where
I x0 is the initial point,
I θ are parameters of the algorithm
I t is the number of iterations.

I Look at the convergence rate

f (x)− f ∗ ≤ cd(x0,X
∗)q

tp

where
I d(x0,X

∗) is the Euclidean distance from x0 to the set of
minimizers X ∗

I c , p, q are constants depending on the problem

I Bound increases with d(x0,X ∗), intuition :

x0 close to X ∗ → good initialization so fast convergence

I Exploit information on d(x0,X
∗) ?
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Sharpness

Definition
A function f satisfies the sharpness property on a set K if there
exists r ≥ 1, µ > 0, s.t.

µd(x ,X ∗)r ≤ f (x)− f ∗, for every x ∈ K (Sharp)

Examples

I Strongly convex function (r = 2)

I Gradient dominated functions (r = 2)

I Matrix game problems like minx maxy x
TAy (r = 1)

I Real analytic functions (r unknown)

I Subanalytic functions (r unknown)



Sharpness for real analytic function

For f real analytic, x ∈ R and x∗ ∈ X ∗,

f (x)− f ∗ =
∞∑
k=q

f (k)(x∗)

k!
(x − x∗)k

where q ≥ 0 is the smallest coefficient for which f (q)(x∗) 6= 0.
There is an interval V around x∗ s.t.

1

2

f (q)(x∗)

q!
|x − x∗|q ≤ f (x)− f ∗

Setting x∗ = ΠX∗(x) this yields (Sharp) on V with q and 1
2
f (q)(x∗)

q! .



Sharpness for subanalytic functions

 Lojasevicz inequality

I Sharpness property is known to be satisfied for real analytic
functions as the  Lojasevicz inequality [ Lojasevicz 1963]

I Generalized recently to broad class of non-smooth convex
functions called subanalytic [Bolte et al 2007].

I Subanalytic functions are functions whose epigraph can be
expressed as a semi-analytic manifold.

I Proofs rely on topological arguments so (r , µ) are mostly
unknown.



Smoothness

Definition
A function f satisfies the smoothness property on a set J if there
exists s ∈ [1, 2], L > 0 s.t.

‖∇f (x)−∇f (y)‖2 ≤ L‖x−y‖s−12 , for every x , y ∈ J (Smooth)

Examples

I Non-smooth (s = 1)

I Smooth (s = 2)

I Hölder smooth (s ∈ (1, 2))



Sharpness and smoothness

If f satisfies (Smooth), for every x ∈ Rn and y = ΠX∗(x),

f (x) ≤ f (y) +∇f (y)T (x − y) +
L

s
‖x − y‖s2 = f ∗ +

L

s
d(x ,X ∗)s

Combined with (Sharp), µd(x ,X ∗)r ≤ f (x)− f ∗, this yields

0 <
sµ

L
≤ d(x ,X ∗)s−r

Taking x → X ∗, necessarily

s ≤ r

Moreover if s < r , last inequality can only be valid on a
bounded set, either smoothness or sharpness or both are not valid
in the whole space.



Condition numbers

We denote
τ = 1− s

r

a condition number on the ratio of powers, s.t.

0 ≤ τ < 1

and
κ = L

2
s /µ

2
r

a generalized condition number.
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General strategy

I Take an algorithm A that outputs points x = A(x0, θ, t),
where

I x0 is the initial point,
I θ are parameters of the algorithm
I t is the number of iterations

I Look at the convergence rate if f satisfies (Sharp)

f (x)− f ∗ ≤ cd(x0,X
∗)q

tp

≤ c ′(f (x0)− f ∗)q/r

tp

I Given γ ≥ 0, compute analytically t s.t.

f (x)− f ∗ ≤ e−γ(f (x0)− f ∗)

I Iterate and compute total complexity



General formulation

Given an algorithm A that outputs points x = A(x0, θ, t)

Scheduled restart schemes :

Inputs: x0, sequence θk , sequence tk
for k = 1 . . .R do

xk = A(xk−1, θk , tk)
end for
Output: x̂ = xR



General analysis

Lemma
Given γ ≥ 0, suppose setting

tk = Ceαk , with C > 0, α ≥ 0,

ensures

f (xk)− f ∗ ≤ Me−γk , with M > 0.

Writing N =
∑R

k=1 tk the total number of iterations, we get

f (x̂)− f ∗ ≤ M exp(−γC−1N), when α = 0,

f (x̂)− f ∗ ≤ M

(αe−αC−1N + 1)
γ
α

, when α > 0.



Smooth convex problems

I If f is cvx and smooth (s = 2, L), an optimal algorithm is the
Accelerated Gradient Acc .

I Given x0, it outputs after t iterations, a point x = Acc(x0, t),
s.t.

f (x)− f ∗ ≤ cL

t2
d(x0,X

∗)2,

where c is a universal constant.

I Assume that f satisfies (Sharp) with (r , µ) on a set K

µd(x ,X ∗)r ≤ f (x)− f ∗, for every x ∈ K

I Assume we are given x0 ∈ Rn, s.t. {x , f (x) ≤ f (x0)} ⊂ K .



Optimal scheme

Proposition 1st part

Assume f cvx, smooth (s = 2, L) and sharp (r , µ) on a set K .
Run scheduled restarts of Acc with

tk = Cτ,κe
τk

Cτ,κ = e1−τ (cκ)
1
2 (f (x0)− f ∗)−

τ
2

Then for every outer iteration k ≥ 0,

f (xk)− f ∗ ≤ e−2k(f (x0)− f ∗).



Optimal scheme

Proposition

Denote N the total number of iterations at the output x̂ , then,
when τ = 0,

f (x̂)− f ∗ ≤ exp
(
−2e−1(cκ)−

1
2N
)

(f (x0)− f ∗) = O
(

exp(−κ−
1
2N)

)
,

while, when τ > 0,

f (x̂)− f ∗ ≤ f (x0)− f ∗(
τe−1(f (x0)− f ∗)

τ
2 (cκ)−

1
2N + 1

) 2
τ

= O
(
κ

1
τ N− 2

τ

)
,

Note : Optimal for this class of problems [Optimal methods of
smooth convex optimization, A. Nemirovski, Y. Nesterov 1985]



Adaptive scheme

I In practice (r , µ) are unknown

I Given a fixed total number of iterations N, run following
schemes

Si ,j : Scheduled restart with tk = Cie
τjk , where Ci = 2i and τj = 2−j .

with i ∈ [1, . . . , blog2Nc], j ∈ [0, . . . , dlog2Ne]
I Optimal bounds up to constant factor 4

I Has a complexity log2(N)2 higher than running N iterations in
the optimal scheme

I Adaptive algorithm



Non-smooth or Hölder smooth convex problems

I If f is cvx, satisfies (Smooth) with (s, L) on a set J, i.e.

‖∇f (x)−∇f (y)‖2 ≤ L‖x − y‖s−12 , for every x , y ∈ J,
(Smooth)

an optimal algorithm is the Fast Universal Gradient method U
by Nesterov, 2015.

I Given ε, x0, it outputs, after t iterations, a point
x = U(x0, ε, t) s.t.

f (x)− f ∗ ≤ ε

2
+

cL
2
s d(x0,X

∗)2

ε
2
s t

2ρ
s

ε

2

where

ρ =
3s − 2

2

is the optimal rate for this class of functions.



Hölder smooth convex problems strategy

I Assume that we have access to ε0 ≥ f (x0)− f ∗ for a given
x0 ∈ Rn

I Given γ ≥ 0 run scheduled restarts with sequence of target
accuracies

εk = e−γkε0

I Choose tk to ensure

f (xk)− f ∗ ≤ εk



Optimal scheme

Proposition 1st part

Assume f cvx, Hölder smooth (s, L) and sharp (r , µ) on a set K .
Run scheduled restarts of U with

εk = e−ρkε0 tk = Cτ,κ,ρe
τk

Cτ,κ,ρ = e1−τ (cκ)
s

3s−2 ε
τ
ρ

0

Then for every outer iteration k ≥ 0,

f (xk)− f ∗ ≤ e−ρkε0.



Optimal scheme

Proposition 2nd part

Denote N the total number of iterations at the output x̂ , then,
when τ = 0,

f (x̂)− f ∗ ≤ exp
(
−ρe−1(cκ)−

s
2ρN

)
ε0 = O

(
exp(−κ−

s
2ρN)

)
,

while, when τ > 0,

f (x̂)− f ∗ ≤ ε0(
τe−1(cκ)−

s
2ρ ε

τ
ρ

0 N + 1

) ρ
τ

= O
(
κ

s
2τ N− ρ

τ

)
,

Note : Optimal for this class of problems [Optimal methods of
smooth convex optimization, A. Nemirovski, Y. Nesterov 1985]



General convex problems

I 3 parameters for the schedule γ,C , α

I Grid search inefficient if r or s unknown

I Otherwise grid search on C works

I Can be used for
→ non-smooth (s = 1), gradient dominated functions (r = 2)
→ non-smooth (s = 1), sharp functions (r = 1)
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Strategy

I Assume f ∗ known (e.g. zero sum-game matrix problem,
projection a convex set...)

I Given an accuracy ε, denote tε the number of iterations to
observe that x = U(x0, ε, tε) satisfies

f (x)− f ∗ ≤ ε

→ Stop when target accuracy reached
→ Restart with a reduced target accuracy



Formulation

Given the Fast Universal Gradient method U that outputs
x = U(x0, ε, t)

Restarts with termination criterion :

Inputs: x0, γ, f ∗

ε0 = f (x0)− f ∗

for k = 1 . . .R do
εk = e−γεk−1
xk = U(xk−1, εk , tεk )

end for
Output: x̂ = xR



Restarts with termination criterion
Assume f cvx, Hölder smooth (s, L) and sharp (r , µ) on a set K .
Run restarts with termination criterion with γ = ρ.
Denote N the total number of iterations at the output x̂ , then,
when τ = 0,

f (x̂)− f ∗ ≤ exp
(
−ρe−1(cκ)−

s
2ρN

)
ε0 = O

(
exp(−κ−

s
2ρN)

)
,

while, when τ > 0,

f (x̂)− f ∗ ≤ ε0(
τe−1(cκ)−

s
2ρ ε

τ
ρ

0 N + 1

) ρ
τ

= O
(
κ

s
2τ N−

ρ
τ

)
,

Note : Restarts robust to the choice of γ.
Taking γ = 1 is optimal up to a small constant factor.
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General setting

I Extension to

minimize f (x) = φ(x) + g(x)

where
I φ satisfies (Smooth) w.r.t a generic norm ‖.‖.

‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖s−1, for every x , y ∈ J,
(Smooth)

I we have access to a prox function h 1-strongly convex w.r.t.
‖.‖ defining a Bregman divergence

Dh(z ; x) = h(z)− h(x)−∇h(x)T (z − x)

I g is simple in the sense that we can easily solve

min
z

yT z + g(z) + λDh(z ; x)

I Covers a whole class f of problems such as sparse or
constrained.

I Need an appropriate notion of sharpness w.r.t ‖.‖.



Relative sharpness

Definition
A convex function f is called relatively sharp with respect to a
strictly convex function h on a set K ⊂ dom(f ) if there exists
r ≥ 1, µ > 0 such that

2µDh(x ;X ∗)
r
2 ≤ f (x)− f ∗ for any x ∈ K (Relative Sharpness)

where Dh(x ;X ∗) = minx∗∈X∗ Dh(x ; x∗) and Dh is the Bregman
divergence associated to h.
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Numerical Experiments

I Classification problems on UCI Sonar data set with various
losses.

I Check convergence of best method found by grid search Adap
I Compare against

I Gradient descent Grad
I Accelerated gradient descent Acc
I Restarts enforcing monotonicity Mono,

i.e., when f (xk+1) ≤ f (xk) in the inner iterations.



Least Squares and Logistic
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Figure: Least squares loss (left) and Logistic loss (right).
Large dots represent restart iterations



Lasso and Dual SVM
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Figure: Lasso (left) and dual SVM (right) problems.
Large dots represent restart iterations
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Contributions

I Open the black box model by adding a generic assumption on
the behavior of the function around minimizers

I Convergence analysis of restart schemes

I Optimal schemes for smooth, Hölder smooth, non-smooth
convex optimization

I Adaptive scheme for smooth convex optimization



Future work

Sharpness analysis

I Sharpness reads

µd(x ,X ∗)r ≤ f (x)− f ∗, for every x ∈ K

I µ depends generally on K , thorough analysis in
From error bounds to the complexity of first-order descent methods

for convex functions, J. Bote et al, 201

I Local adaptivity of restart schemes ?

I If f ∗ known, restart with termination criterion is adaptive.
→ Approximate f ∗ ?

Practical algorithm

I Grid search shows robustness but not very practical

I Restarting from a combination of points, see
Restarting accelerated gradient methods with a rough strong

convexity estimate, O. Fercoq, Z. Qu, 2016



Thanks !

Questions ?
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