Sharpness, Restart, Acceleration

Vincent Roulet, Alexandre d'Aspremont

OSL, Les Houches, April 13, 2017

Motivation

► Goal :

minimize f(x), $f: \mathbb{R}^n \to \mathbb{R}$ cvx

Some algorithms use past information to build next iterate

- Accelerated Gradient Method
- Universal Fast Gradient Method
- Quasi-Newton methods
- •
- Idea : Refresh algorithms when past information is "no longer relevant"
- Doesn't make any sense for gradient descent with line search for example

How to characterize past information ?

- ► Take an algorithm A that outputs points x = A(x₀, θ, t), where
 - x₀ is the initial point,
 - θ are parameters of the algorithm
 - *t* is the number of iterations.
- Look at the convergence rate

$$f(x) - f^* \leq \frac{cd(x_0, X^*)^q}{t^p}$$

where

- ► d(x₀, X^{*}) is the Euclidean distance from x₀ to the set of minimizers X^{*}
- c, p, q are constants depending on the problem
- Bound increases with $d(x_0, \mathcal{X}^*)$, intuition :

 x_0 close to $X^* \to \text{good}$ initialization so fast convergence

• Exploit information on $d(x_0, X^*)$?

Plan

Sharpness

Scheduled restarts

General strategy Scheduled restarts for smooth convex problem Scheduled restarts for non-smooth or Hölder smooth convex problem

Restarts with termination criterion

Composite problems & Bregman divergences

Numerical Experiments

Conclusion

Sharpness

Definition

A function f satisfies the sharpness property on a set K if there exists $r \ge 1$, $\mu > 0$, s.t.

$$ud(x, X^*)^r \leq f(x) - f^*$$
, for every $x \in K$ (Sharp)

Examples

- Strongly convex function (r = 2)
- Gradient dominated functions (r = 2)
- Matrix game problems like $\min_x \max_y x^T A y$ (r = 1)
- Real analytic functions (r unknown)
- Subanalytic functions (r unknown)

Sharpness for real analytic function

For f real analytic, $x \in \mathbb{R}$ and $x^* \in X^*$,

$$f(x) - f^* = \sum_{k=q}^{\infty} \frac{f^{(k)}(x^*)}{k!} (x - x^*)^k$$

where $q \ge 0$ is the smallest coefficient for which $f^{(q)}(x^*) \ne 0$. There is an interval V around x^* s.t.

$$\frac{1}{2}\frac{f^{(q)}(x^*)}{q!}|x-x^*|^q \le f(x) - f^*$$

Setting $x^* = \prod_{X^*}(x)$ this yields (Sharp) on V with q and $\frac{1}{2} \frac{f^{(q)}(x^*)}{q!}$.

Sharpness for subanalytic functions

Łojasevicz inequality

- Sharpness property is known to be satisfied for real analytic functions as the Łojasevicz inequality [Łojasevicz 1963]
- Generalized recently to broad class of non-smooth convex functions called subanalytic [Bolte et al 2007].
- Subanalytic functions are functions whose epigraph can be expressed as a semi-analytic manifold.
- ► Proofs rely on topological arguments so (r, µ) are mostly unknown.

Smoothness

Definition

A function f satisfies the smoothness property on a set J if there exists $s \in [1, 2]$, L > 0 s.t.

$$\|
abla f(x) -
abla f(y)\|_2 \leq L \|x - y\|_2^{s-1}$$
, for every $x, y \in J$ (Smooth)

Examples

- ▶ Non-smooth (s = 1)
- Smooth (s = 2)
- Hölder smooth ($s \in (1,2)$)

Sharpness and smoothness

If f satisfies (Smooth), for every $x \in \mathbb{R}^n$ and $y = \prod_{X^*}(x)$,

$$f(x) \leq f(y) + \nabla f(y)^{T}(x-y) + \frac{L}{s} ||x-y||_{2}^{s} = f^{*} + \frac{L}{s} d(x, X^{*})^{s}$$

Combined with (Sharp), $\mu d(x, X^*)^r \leq f(x) - f^*$, this yields

$$0 < \frac{s\mu}{L} \le d(x, X^*)^{s-r}$$

Taking $x \to X^*$, necessarily

$s \leq r$

Moreover if s < r, last inequality can only be valid on a **bounded set**, either smoothness or sharpness or both are not valid in the whole space.

Condition numbers

We denote

$$au = 1 - \frac{s}{r}$$

a condition number on the ratio of powers, s.t.

 $0 \leq \tau < 1$

 and

$$\kappa = L^{\frac{2}{s}}/\mu^{\frac{2}{r}}$$

a generalized condition number.

Plan

Sharpness

Scheduled restarts

General strategy Scheduled restarts for smooth convex problem Scheduled restarts for non-smooth or Hölder smooth convex problem

Restarts with termination criterion

Composite problems & Bregman divergences

Numerical Experiments

Conclusion

General strategy

- ► Take an algorithm A that outputs points x = A(x₀, θ, t), where
 - x₀ is the initial point,
 - θ are parameters of the algorithm
 - t is the number of iterations
- Look at the convergence rate if f satisfies (Sharp)

$$egin{aligned} f(x) - f^* &\leq rac{cd(x_0, X^*)^q}{t^p} \ &\leq rac{c'(f(x_0) - f^*)^{q/r}}{t^p} \end{aligned}$$

• Given $\gamma \geq 0$, compute analytically t s.t.

$$f(x)-f^* \leq e^{-\gamma}(f(x_0)-f^*)$$

Iterate and compute total complexity

Given an algorithm \mathcal{A} that outputs points $x = \mathcal{A}(x_0, \theta, t)$

Scheduled restart schemes :

Inputs: x_0 , sequence θ_k , sequence t_k for $k = 1 \dots R$ do $x_k = \mathcal{A}(x_{k-1}, \theta_k, t_k)$ end for Output: $\hat{x} = x_R$

General analysis

Lemma Given $\gamma \ge 0$, suppose setting

$$t_k = Ce^{\alpha k}, \quad \text{with } C > 0, \ \alpha \ge 0,$$

ensures

$$f(x_k) - f^* \leq M e^{-\gamma k}$$
, with $M > 0$.

Writing $N = \sum_{k=1}^{R} t_k$ the total number of iterations, we get

$$f(\hat{x}) - f^* \leq M \exp(-\gamma C^{-1}N), \quad \text{when } \alpha = 0,$$

$$f(\hat{x}) - f^* \leq \frac{M}{(\alpha e^{-\alpha} C^{-1}N + 1)^{\frac{\gamma}{\alpha}}}, \quad \text{when } \alpha > 0.$$

Smooth convex problems

- ► If f is cvx and smooth (s = 2, L), an optimal algorithm is the Accelerated Gradient Acc.
- ► Given x₀, it outputs after t iterations, a point x = Acc(x₀, t), s.t.

$$f(x) - f^* \leq \frac{cL}{t^2} d(x_0, X^*)^2,$$

where c is a universal constant.

• Assume that f satisfies (Sharp) with (r, μ) on a set K

$$\mu d(x, X^*)^r \leq f(x) - f^*$$
, for every $x \in K$

• Assume we are given $x_0 \in \mathbb{R}^n$, s.t. $\{x, f(x) \leq f(x_0)\} \subset K$.

Optimal scheme

Proposition 1st part

Assume f cvx, smooth (s = 2, L) and sharp (r, μ) on a set K. Run scheduled restarts of Acc with

$$t_k = C_{ au,\kappa} e^{ au k}$$

 $C_{ au,\kappa} = e^{1- au} (c\kappa)^{rac{1}{2}} (f(x_0) - f^*)^{-rac{ au}{2}}$

Then for every outer iteration $k \ge 0$,

$$f(x_k) - f^* \le e^{-2k}(f(x_0) - f^*).$$

Optimal scheme

Proposition

Denote *N* the total number of iterations at the output \hat{x} , then, when $\tau = 0$,

$$f(\hat{x}) - f^* \leq \exp\left(-2e^{-1}(c\kappa)^{-\frac{1}{2}}N\right)(f(x_0) - f^*) = O\left(\exp(-\kappa^{-\frac{1}{2}}N)\right),$$

while, when $\tau > 0$,

$$f(\hat{x}) - f^* \leq \frac{f(x_0) - f^*}{\left(\tau e^{-1}(f(x_0) - f^*)^{\frac{\tau}{2}}(c\kappa)^{-\frac{1}{2}}N + 1\right)^{\frac{2}{\tau}}} = O\left(\kappa^{\frac{1}{\tau}}N^{-\frac{2}{\tau}}\right),$$

Note : Optimal for this class of problems [*Optimal methods of smooth convex optimization*, A. Nemirovski, Y. Nesterov 1985]

Adaptive scheme

• In practice (r, μ) are unknown

 Given a fixed total number of iterations N, run following schemes

 $S_{i,j}$: Scheduled restart with $t_k = C_i e^{\tau_j k}$, where $C_i = 2^i$ and $\tau_j = 2^{-1}$

with $i \in [1, \dots, \lfloor \log_2 N \rfloor]$, $j \in [0, \dots, \lceil \log_2 N \rceil]$

- Optimal bounds up to constant factor 4
- Has a complexity log₂(N)² higher than running N iterations in the optimal scheme
- Adaptive algorithm

Non-smooth or Hölder smooth convex problems

• If f is cvx, satisfies (Smooth) with (s, L) on a set J, i.e.

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2^{s-1}, \quad \text{for every } x, y \in J,$$
(Smooth)

an optimal algorithm is the Fast Universal Gradient method ${\cal U}$ by Nesterov, 2015.

Given ε, x₀, it outputs, after t iterations, a point
 x = U(x₀, ε, t) s.t.

$$f(x) - f^* \leq \frac{\epsilon}{2} + \frac{cL^{\frac{2}{s}}d(x_0, X^*)^2}{\epsilon^{\frac{2}{s}}t^{\frac{2\rho}{s}}}\frac{\epsilon}{2}$$

where

$$\rho = \frac{3s - 2}{2}$$

is the optimal rate for this class of functions.

Hölder smooth convex problems strategy

- Assume that we have access to e₀ ≥ f(x₀) − f^{*} for a given x₀ ∈ ℝⁿ
- ► Given γ ≥ 0 run scheduled restarts with sequence of target accuracies

$$\epsilon_k = e^{-\gamma k} \epsilon_0$$

Choose t_k to ensure

$$f(x_k) - f^* \leq \epsilon_k$$

Optimal scheme

Proposition 1st part

Assume f cvx, Hölder smooth (s, L) and sharp (r, μ) on a set K. Run scheduled restarts of U with

$$egin{aligned} \epsilon_k &= e^{-
ho k} \epsilon_0 & t_k &= C_{ au,\kappa,
ho} e^{ au k} \ C_{ au,\kappa,
ho} &= e^{1- au} (c\kappa)^{rac{s}{3s-2}} \epsilon_0^{rac{ au}{
ho}} \end{aligned}$$

Then for every outer iteration $k \ge 0$,

$$f(x_k)-f^*\leq e^{-\rho k}\epsilon_0.$$

Optimal scheme

Proposition 2nd part

Denote *N* the total number of iterations at the output \hat{x} , then, when $\tau = 0$,

$$f(\hat{x}) - f^* \leq \exp\left(-\rho e^{-1}(c\kappa)^{-\frac{s}{2\rho}}N\right)\epsilon_0 = O\left(\exp(-\kappa^{-\frac{s}{2\rho}}N)\right),$$

while, when $\tau > 0$,

$$f(\hat{x}) - f^* \leq \frac{\epsilon_0}{\left(\tau e^{-1} (c\kappa)^{-\frac{s}{2\rho}} \epsilon_0^{\frac{\tau}{\rho}} N + 1\right)^{\frac{\rho}{\tau}}} = O\left(\kappa^{\frac{s}{2\tau}} N^{-\frac{\rho}{\tau}}\right),$$

Note : Optimal for this class of problems [*Optimal methods of smooth convex optimization*, A. Nemirovski, Y. Nesterov 1985]

General convex problems

- ▶ 3 parameters for the schedule γ , C, α
- Grid search inefficient if r or s unknown
- Otherwise grid search on C works
- Can be used for

→ non-smooth (s = 1), gradient dominated functions (r = 2) → non-smooth (s = 1), sharp functions (r = 1)

Plan

Sharpness

Scheduled restarts

General strategy Scheduled restarts for smooth convex problem Scheduled restarts for non-smooth or Hölder smooth convex problem

Restarts with termination criterion

Composite problems & Bregman divergences

Numerical Experiments

Conclusion

Strategy

- Assume f* known (e.g. zero sum-game matrix problem, projection a convex set...)
- ► Given an accuracy \(\epsilon\), denote \(t_\epsilon\) the number of iterations to observe that \(x = U(x_0, \epsilon, t_\epsilon)\) satisfies

$$f(x) - f^* \le \epsilon$$

- \rightarrow Stop when target accuracy reached
- \rightarrow Restart with a reduced target accuracy

Formulation

Given the Fast Universal Gradient method $\mathcal U$ that outputs $x = \mathcal U(x_0, \epsilon, t)$

Restarts with termination criterion :

Inputs: x_0 , γ , f^* $\epsilon_0 = f(x_0) - f^*$ for $k = 1 \dots R$ do $\epsilon_k = e^{-\gamma} \epsilon_{k-1}$ $x_k = \mathcal{U}(x_{k-1}, \epsilon_k, t_{\epsilon_k})$ end for Output: $\hat{x} = x_R$

Restarts with termination criterion

Assume f cvx, Hölder smooth (s, L) and sharp (r, μ) on a set K. Run restarts with termination criterion with $\gamma = \rho$. Denote N the total number of iterations at the output \hat{x} , then,

when $\tau = 0$,

$$f(\hat{x}) - f^* \leq \exp\left(-
ho e^{-1}(c\kappa)^{-\frac{s}{2
ho}}N
ight)\epsilon_0 = O\left(\exp(-\kappa^{-\frac{s}{2
ho}}N)
ight),$$

while, when $\tau > 0$,

$$f(\hat{x}) - f^* \leq \frac{\epsilon_0}{\left(\tau e^{-1} (c\kappa)^{-\frac{s}{2\rho}} \epsilon_0^{\frac{\tau}{\rho}} N + 1\right)^{\frac{\rho}{\tau}}} = O\left(\kappa^{\frac{s}{2\tau}} N^{-\frac{\rho}{\tau}}\right),$$

Note : Restarts robust to the choice of γ . Taking $\gamma = 1$ is optimal up to a small constant factor.

Plan

Sharpness

Scheduled restarts

General strategy Scheduled restarts for smooth convex problem Scheduled restarts for non-smooth or Hölder smooth convex problem

Restarts with termination criterion

Composite problems & Bregman divergences

Numerical Experiments

Conclusion

General setting

Extension to

minimize
$$f(x) = \phi(x) + g(x)$$

where

• ϕ satisfies (Smooth) w.r.t a generic norm $\|.\|$.

 $\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|^{s-1}, \quad \text{for every } x, y \in J,$ (Smooth)

▶ we have access to a prox function *h* 1-strongly convex w.r.t. ||.|| defining a Bregman divergence

$$D_h(z;x) = h(z) - h(x) - \nabla h(x)^T (z-x)$$

\blacktriangleright g is simple in the sense that we can easily solve

$$\min_{z} y^{T} z + g(z) + \lambda D_{h}(z; x)$$

- Covers a whole class f of problems such as sparse or constrained.
- ▶ Need an appropriate notion of sharpness w.r.t ||.||.

Definition

A convex function f is called relatively sharp with respect to a strictly convex function h on a set $K \subset \text{dom}(f)$ if there exists $r \ge 1$, $\mu > 0$ such that

 $2\mu D_h(x;X^*)^{rac{r}{2}} \leq f(x) - f^*$ for any $x \in K$ (Relative Sharpness)

where $D_h(x; X^*) = \min_{x^* \in X^*} D_h(x; x^*)$ and D_h is the Bregman divergence associated to h.

Plan

Sharpness

Scheduled restarts

General strategy Scheduled restarts for smooth convex problem Scheduled restarts for non-smooth or Hölder smooth convex problem

Restarts with termination criterion

Composite problems & Bregman divergences

Numerical Experiments

Conclusion

Numerical Experiments

- Classification problems on UCI Sonar data set with various losses.
- Check convergence of best method found by grid search Adap
- Compare against
 - Gradient descent Grad
 - Accelerated gradient descent Acc
 - ▶ Restarts enforcing monotonicity Mono, i.e., when f(x_{k+1}) ≤ f(x_k) in the inner iterations.

Least Squares and Logistic

Large dots represent restart iterations

Lasso and Dual SVM

Plan

Sharpness

Scheduled restarts

General strategy Scheduled restarts for smooth convex problem Scheduled restarts for non-smooth or Hölder smooth convex problem

Restarts with termination criterion

Composite problems & Bregman divergences

Numerical Experiments

Conclusion

Contributions

- Open the black box model by adding a generic assumption on the behavior of the function around minimizers
- Convergence analysis of restart schemes
- Optimal schemes for smooth, Hölder smooth, non-smooth convex optimization
- Adaptive scheme for smooth convex optimization

Future work

Sharpness analysis

Sharpness reads

$$\mu d(x, X^*)^r \leq f(x) - f^*$$
, for every $x \in K$

- μ depends generally on K, thorough analysis in
 From error bounds to the complexity of first-order descent methods for convex functions, J. Bote et al, 201
- Local adaptivity of restart schemes ?
- ► If f* known, restart with termination criterion is adaptive.
 → Approximate f* ?

Practical algorithm

- Grid search shows robustness but not very practical
- Restarting from a combination of points, see Restarting accelerated gradient methods with a rough strong convexity estimate, O. Fercoq, Z. Qu, 2016

Thanks !

Questions ?