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Part 1

Sharpness in Convex Optimization Problems
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Optimization Problems
Goal Make best possible action for a given task

Classical Example: Minimize production cost of an item

Formally,

minimize f (x)

subject to x ∈ C

in x where
I x = (x1, . . . , xd) ∈ Rd represents the parameters of the task
I f : Rd → R measures the cost of an action
I C ⊂ Rd represents constraints on the possible parameters

Applications
I Design an electronic circuit
I Fit a model to data (Machine Learning in 2nd part)
I ...
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Optimization Algorithms

Principle: Search iteratively an approximate solution

Description
1. Starts from x0 ∈ C
2. At each t ≥ 0, gets information It on the problem at xt
3. Builds xt+1 from previous information {I0, . . . , It}

• Assume here first order information It = {f (xt),∇f (xt)}
• Rule to design

Performance
Measured by number of iterations T to achieve accuracy ε

f (xT )− f ∗ ≤ ε

where f ∗ = minx f (x)
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Algorithm Design

Idea: Use simple geometric description of the function around its
minimizers to design algorithms

In this part
1. Take advantage of the sharpness of a function to accelerate

convergence of classical algorithms
Sharpness, Restart and Acceleration, V. Roulet and A. d’Aspremont, to
appear in Advances in Neural Information Processing Systems 30 (NIPS
2017).

2. Use sharpness description to link optimization and statistical
performances of decoding procedures
Computational Complexity versus Statistical Performance on Sparse
Recovery Problems, V. Roulet, N. Boumal and A. d’Aspremont, under
submission to Information and Inference: A Journal of the IMA.
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Outline

I Sharpness in Convex Optimization Problems
1.1 Smooth Convex Optimization
1.2 Sharpness
1.3 Scheduled Restarts
1.4 Sharpness on Sparse Recovery Problems

6



Convex Functions

Convex Functions
A differentiable function f : Rd → R is convex if at any x ∈ Rd ,

f (y) ≥ f (x) + 〈∇f (x), y − x〉, for every y ∈ Rd

← x

x → f(x)
y → f(x) + 〈∇f(x), y − x〉

∇f (x) = 0 =⇒ f (x) = f ∗
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Strong Convexity

Strong Convexity
A differentiable function f : Rd → R is strongly convex if there exists
µ ≥ 0 such that at any x ∈ Rd ,

f (y) ≥ f (x) + 〈∇f (x), y − x〉+ µ

2
‖x − y‖22, for every y ∈ dom f .

← x

x → f(x)
y → f(x) + 〈∇f(x), y − x〉+ µ

2
‖x− y‖22

Implies minimizer x∗ is unique and µ
2 ‖x

∗ − x‖22 ≤ f (x)− f ∗
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Smooth Functions
Smooth Functions
A differentiable function f : Rd → R is smooth if there exists L such that

‖∇f (x)−∇f (y)‖2 ≤ L‖x − y‖2, for every x , y ∈ Rd

Using Taylor expansion of f , at any point x ∈ Rd

f (y) ≤ f (x) + 〈∇f (x), y − x〉+ L
2‖x − y‖22, for every y ∈ Rd

← x

x → f(x)

y → f(x) + 〈∇f(x), y − x〉+ L
2 ‖x− y‖22

xt+1 = argminy f (xt) + 〈∇f (xt), y − xt〉+ L
2‖xt − y‖22

⇒ f (xt+1) ≤ f (xt)− L
2‖∇f (xt)‖

2
2
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Smooth Convex Optimization Problems
Study unconstrained problems

minimize f (x)
where f is convex and L-smooth

Optimal algorithm
Accelerated gradient descent [Nesterov, 1983] that starts at x0 and
outputs after t iterations, x̂ = A(x0, t), s.t.

f (x̂)− f ∗ ≤ 4L
t2

d(x0,X
∗)2,

where d(x ,X ∗) is the Euclidean distance from x to X ∗ = argminx f (x)

Intuition: Builds estimated sequence of f along iterates

Additional assumptions ?
I With strong convexity, optimal algorithm outputs x̂ such that

f (x̂)− f ∗ = O(exp(−
√
µ/Lt))

I Weaker assumption ?
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Sharpness

Sharpness
A function f satisfies the sharpness property on a set K ⊃ X ∗ if there
exists r ≥ 1, µ > 0, s.t.

µ

r
d(x ,X ∗)r ≤ f (x)− f ∗, for every x ∈ K

Lower bound on the function around minimizers

X∗

x → f(x)
x → µd(x,X∗)

X∗

x → f(x)
x →

µ

2d(x,X
∗)2

r = 1 r = 2
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Sharpness

Applications
I Strongly convex functions (r = 2)
I Sparse Prediction problem like f (x) = 1

2‖Ax − b‖22 + λ‖x‖1 (r = 2)
I Matrix game problems minx maxy xTAy (r = 1)
I Real and subanalytic functions (r = ?)

References
I Studied by Łojasiewicz [1963] for real analytical functions
I Numerous applications e.g. [Bolte et al., 2007]: non-convex

optimization, dynamical systems, concentration inequalities...
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Sharpness and Smoothness

Combining sharpness lower bound and smoothness upper bound on X ∗,

µ

r
d(x ,X ∗)r ≤ f (x)− f ∗ ≤ L

2
d(x ,X ∗)2

=⇒ 0 <
2µ
rL
≤ d(x ,X ∗)2

d(x ,X ∗)r

Taking x → X ∗, necessarily 2 ≤ r

Condition numbers

τ = 1− 2/r ∈ [0, 1[ and κ = L/µ
2
r
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Scheduled Restarts
Principle Run accelerated algorithm A, stop it, restart from last iterate

Here schedule restarts in advance at times tk and build from x0 ∈ Rd

xk = A(xk−1, tk)

Why?
Combine convergence bound and sharpness

f (xk)− f ∗ ≤ 4L
t2k

d(xk−1,X
∗)2 and

µ

r
d(xk−1,X

∗)r ≤ f (xk−1)− f ∗

So
f (xk)− f ∗ ≤ cL,µ,r

t2k
(f (xk−1)− f ∗)2/r

Method of analysis

1. For given 0 < γ < 1, compute tk , f (xk)− f ∗ ≤ γ(f (xk−1)− f ∗)

2. Optimize on γ to get optimal rate in terms of total number of
iterations N =

∑R
i=1 tk after R restarts
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Optimal Schedule

Proposition [R. and d’Aspremont, 2017]

For f convex, L-smooth and (r , µ)-sharp on a set K ⊃ {x : f (x) ≤ f (x0)}
Run scheduled restarts with

tk = Cτ,κe
τk

Then after R restarts and N =
∑R

i=1 tk total iterations, it outputs x̂ s.t.

f (x̂)− f ∗ = O
(
exp(−κ−1/2N)

)
when τ = 0

f (x̂)− f ∗ = O
(
1/N2/τ

)
when τ > 0

Recall: τ = 1− 2/r , κ = L/µ2/r
Remarks

I Optimal for this class of problems [Nemirovskii and Nesterov, 1985]
I Bound continuous in τ : for τ → 0, gets bound for τ = 0

17



Parameter-free straegy

In practice (r , µ) are unknown, adaptivity is crucial

Adaptive strategy (log-scale grid search)
Given a fixed budget of iterations N, search with schedules of the form

tk = Ceτk

I Grid on C limited by N

I Grid on C limited by continuity of the bounds in τ

Analysis
I Nearly-optimal bounds (up to constant factor 4)
I Cost of the grid search log2(N)2

18
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Universal Scheduled Restarts
Generalization
Non-smooth or Hölder smooth convex functions where there exists
1 ≤ s ≤ 2 and L > 0 s.t.

‖∇f (x)−∇f (y)‖2 ≤ L‖x − y‖s−1
2 , for every x , y ∈ dom f ,

where ∇f (x) is any subgradient of f at x if s = 1 (non-smooth case)

Optimal rate [Nesterov, 2015] (without sharpness)

f (x̂)− f ∗ ≤ csLd(x0,X
∗)s

tρ
where ρ = 3s/2− 1

Proposition [R. and d’Aspremont, 2017] (Simplified)

Optimal scheduled restart with sharpness output x̂ s.t.

f (x̂)− f ∗ = O
(
exp(−κ−s/(2ρ)N)

)
when τ = 0

f (x̂)− f ∗ = O
(
1/Nρ/τ

)
when τ > 0

where τ = 1− s/r ∈ [0, 1[, κ = L2/s/µ
2
r

19
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Test on Classification Problems
For real data set (n = 208 samples, d = 60 features)

Compare to
I Accelerated gradient (Acc)
I Restart heuristic enforcing monotonicity of objective values (Mono)
I Adaptive restarts (Adap)

For
I Least square minx ‖Ax − b‖22
I Logistic minx

∑
i log(1+ exp(−biaTi x))

Least square Logistic
Large dots represent the restart iterations
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Test on Classification Problems
Results also valid for composite problems (same convergence bounds)

minimize f (x) + g(x)

where f , g convex, g "simple", f is (L, s)-smooth, f + g is (r , µ)-sharp

Test on
I Lasso minx ‖Ax − b‖22 + ‖x‖1
I Dual SVM minx xTAAT x − xT1 s.t. 0 ≤ x ≤ 1

Lasso Dual SVM
Large dots represent the restart iterations

21



Test on Classification Problems
Results also valid for composite problems (same convergence bounds)

minimize f (x) + g(x)

where f , g convex, g "simple", f is (L, s)-smooth, f + g is (r , µ)-sharp

Test on
I Lasso minx ‖Ax − b‖22 + ‖x‖1
I Dual SVM minx xTAAT x − xT1 s.t. 0 ≤ x ≤ 1

Lasso Dual SVM
Large dots represent the restart iterations

21



Outline

I Sharpness in Convex Optimization Problems
1.1 Smooth Convex Optimization
1.2 Sharpness
1.3 Scheduled Restarts
1.4 Sharpness on Sparse Recovery Problems

22



Sparse Recovery Problems

Goal Recover a signal x∗ ∈ Rd from n linear observations

bi = aTi x
∗, i ∈ {1, . . . , n}

Problem
Needs more observations n than features d

Additional assumption
x∗ is s-sparse : has only s � d non-zero values

Applications
I Coding/Decoding audio signals, images, ...
I Find explanatory variables for an experiment
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Sparse Recovery Problems

Original decoding procedure
Given b = (b1, . . . , bn)

T ∈ Rn and A = (a1, . . . , an)
T ∈ Rn×d , original

problem is

minimize ‖x‖0
subject to Ax = b

where Supp(x) = {i ∈ {1, . . . , d}, xi 6= 0} is the support of x

→ NP hard combinatorial problem...

Practical decoding procedure
Solve instead convex relaxation

minimize Card(Supp(x))
subject to Ax = b

Recovery achieved if solution x̂ = x∗, where x∗ original vector (b = Ax∗)
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Sharpness in Sparse Recovery Problems

Exploit sharpness of f (x) = ‖x‖1 on {x : Ax = b}

γAd(x ,X
∗) ≤ f (x)− f ∗

Proposition [R., Boumal and d’Aspremont, 2017] (Simplified)

Optimal scheduled restart of classical algorithm for exact recovery
outputs, after N total number of iterations, x̂ such that

f (x̂)− f ∗ = O(exp (−γAN))

Remark
I Optimal schedule needs γA but log-scale grid search nearly optimal
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Sharpness and Sparse Recovery Performance

Recovery threshold
Given A ∈ Rn×d , denote smax(A) its recovery threshold such that any
original signal x∗ s-sparse, with s < smax(A), is the unique solution of

minimize ‖x‖1
subject to Ax = Ax∗

Proposition [R., Boumal and d’Aspremont, 2017]

Given A ∈ Rn×d and an original signal x∗ s-sparse, with s < smax(A),

‖x‖1−‖x∗‖1 > (1−
√

s/smax(A))‖x−x∗‖1 ∀x ∈ Rd : Ax = Ax∗, x 6= x∗

Rate of convergence of optimal restart scheme reads

‖x̂‖1 − ‖x∗‖1 = O
(
exp

(
−
(
1−

√
s/smax(A)

)
N
))
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Numerical Illustration
For random observation matrix A, smax(A) ≈ n/ log d

So to recover s-sparse signals, needs

n ≈ s log d

Convergence rate of optimal restart

‖x̂‖1 − ‖x∗‖1 = O
(
exp

(
−
(
1− c

√
s log d/n

)
N
))

Best restart scheme found by grid search along oversampling ratio
τ = n/(s log d) for fixed d = 1000

Left : sparsity s = 20 fixed. Right : nb of samples n = 200 fixed.
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Conclusion and Future Work
Contributions

I Analyze acceleration of accelerated schemes by restart under a
sharpness assumption

I Show cost of adaptive schemes
I Link optimization complexity and statistical performance of sparse

recovery problems with sharpness

Not presented
I Link sharpness to robust recovery performance or noisy observations
I Extension to other sparse structures : group sparsity, low rank

matrices
I Optimization algorithms seen as integration methods of the gradient

flow [Scieur, R., Bach and d’Aspremont, 2017]

Perspectives
I Get more practical adaptive scheme.
→ Fercoq and Qu [2017] has one for r = 2, extends results

I Refine sharpness analysis for robust sparse recovery problems
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Part 2

Machine Learning Problems
with Partitioning Structure

29



Machine Learning Problems

Goal Predict attributes y from objects x

Images → Digits DNA → Phenotype Documents → Topic

30



Supervised Machine Learning Problems

Goal
Learn mapping

f : x → y

from n training samples of objects/attributes (x1, y1), . . . , (xn, yn)

Method
Prediction of f on (x , y) measured by loss function `(y , f (x))
Learning procedure consist in

minimize
1
n

n∑
i=1

`(yi , f (xi )) + R(f )

in mapping f ∈ F where R is a regularizer that prevents overfitting on
training data
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Structure Information

Idea Impose an underlying structure on the data
to both learn and simplify prediction task

In this part
1. Group features for prediction task

Iterative Hard Clustering of Features, V. Roulet, F. Fogel, F. Bach and A.
d’Aspremont, under submission to the 21st International Conference on
Artificial Intelligence and Statistics (AISTATS 2018)

2. (Not presented) Extension to group samples or tasks
Learning with Clustering Penalties, V. Roulet, F. Fogel, F. Bach and A.
d’Aspremont, presented at workshop Transfer and Multi-Task Learning:
Trends and New Perspectives (NIPS 2015)
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Outline

II Machine Learning Problems
with Partitioning Structure
2.1 Grouping Features for Prediction
2.2 Iterative Hard Thresholding
2.3 Sparse and Linear Grouped Models
2.4 Synthetic experiments
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Practical Motivation

Goal Predict phenotypes from DNA

Data
Genomes x1, . . . xn composed of d genes

Problem
Number of genes d very large, prediction hard to make and interpret

Assumption
Some genes are redundant → form groups of genes and compute their
influence
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Problem Formulation

Linear regression model
Attributes y ∈ R, find w ∈ Rd such that

xTw ≈ y

To this end,
minimize L(w) + λR(w)

in w ∈ Rd where L(w) = 1
n

∑n
i=1 `(yi ,w

T xi ) is the empirical loss and λ
is a regularization parameter

Examples:
I Squared loss `(y , xTw) = (y − xTw)2

I Squared regularizer R(w) = ‖w‖22
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Problem Formulation

Usual sparsity
Selects s features, by constraining w with at most s non-zero values,

minimize L(w) + λR(w)
subject to Card(Supp(w)) ≤ s,

where Supp(w) = {i ∈ {1, . . . , d},wi 6= 0} is the support of w

→ Hard combinatorial problem

→ Solved approximately by projected gradient descent/convex relaxation

Reduce prediction problem to at most s variables
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Problem Formulation

Grouping constraints
I Constraint w to have at most Q different values v1, . . . , vQ
I Each vq is assigned to a group gq ⊂ {1, . . . , d}

Formally, w defines a partition {g1, . . . , gQ} of {1, . . . , d}

Part(w) = {g ⊂ {1, . . . , d} : (i , j) ∈ g × g , iff wi = wj}

Example: w = (7, -3, -3, 0, 7) → Part(w) = {{1,5}, {4}, {2,3}}

Regression with grouping constraints of the feature reads

minimize L(w) + λR(w)
subject to Card(Part(w)) ≤ Q

Reduce prediction problem to at most Q variables
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Outline

II Machine Learning Problems
with Partitioning Structure
2.1 Grouping Features for Prediction
2.2 Iterative Hard Thresholding
2.3 Sparse and Linear Grouped Models
2.4 Synthetic experiments
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Projection on feasible set

Projection of w ∈ Rd on {w : Card(Part(w)) ≤ Q} reads

minimize
Q∑

q=1

∑
i∈gq

(wi − vq)
2,

in v1, . . . , vQ ∈ R and G = {g1, . . . , gQ} a partition of {1, . . . , d}

→ Recognizes k-means in one dimension

→ Can be solved exactly in polynomial time by dynamic programming

Projected gradient descent is possible
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Iterative Hard Clustering

Denote k-means(w ,Q) the projection of w that group it in Q groups

Algorithm Iterative Hard Clustering (IHC)
Inputs: L(w),R(w),Q, λ ≥ 0, step size γt
Initialize w0 ∈ Rd (e.g. w0 = 0)
for t = 0,. . . ,T do

wt+1/2 = wt − γt(∇L(wt) + λ∇R(wt))
wt+1 = k-means(wt+1/2,Q)

end for
Output: ŵ = wT

Remarks
I In practice, backtracking line search for γt , ensures decrease
I Akin to projected gradient descent for sparse problems, called

Iterative Hard Thresholding (IHT)
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Convergence analysis

Problem
Constraint set is not convex, convergence is not ensured...

→ Use that it’s a union of subspaces defined by partitions

Recovery analysis
Analyze algorithm as a decoding procedure

I Assume
yi = xTi w∗ + ηi , for every i ∈ {1, . . . , n}

where η = N (0, σ2) and w∗ s.t. Card(Part(w∗)) ≤ Q

I Analyze convergence to w∗ by solving least-square problem
I Compute number of random observations n needed to find w∗

Results [R., Fogel, d’Aspremont and Bach, 2017]
Recovery (up to statistical precision) for n ≥ d random observations

Partitioning structure much harder than sparsity where recovery needs
n = O(s log d)

41



Convergence analysis
Problem
Constraint set is not convex, convergence is not ensured...

→ Use that it’s a union of subspaces defined by partitions

Recovery analysis
Analyze algorithm as a decoding procedure

I Assume
yi = xTi w∗ + ηi , for every i ∈ {1, . . . , n}

where η = N (0, σ2) and w∗ s.t. Card(Part(w∗)) ≤ Q

I Analyze convergence to w∗ by solving least-square problem
I Compute number of random observations n needed to find w∗

Results [R., Fogel, d’Aspremont and Bach, 2017]
Recovery (up to statistical precision) for n ≥ d random observations

Partitioning structure much harder than sparsity where recovery needs
n = O(s log d)

41



Convergence analysis
Problem
Constraint set is not convex, convergence is not ensured...

→ Use that it’s a union of subspaces defined by partitions

Recovery analysis
Analyze algorithm as a decoding procedure

I Assume
yi = xTi w∗ + ηi , for every i ∈ {1, . . . , n}

where η = N (0, σ2) and w∗ s.t. Card(Part(w∗)) ≤ Q

I Analyze convergence to w∗ by solving least-square problem
I Compute number of random observations n needed to find w∗

Results [R., Fogel, d’Aspremont and Bach, 2017]
Recovery (up to statistical precision) for n ≥ d random observations

Partitioning structure much harder than sparsity where recovery needs
n = O(s log d)

41



Convergence analysis
Problem
Constraint set is not convex, convergence is not ensured...

→ Use that it’s a union of subspaces defined by partitions

Recovery analysis
Analyze algorithm as a decoding procedure

I Assume
yi = xTi w∗ + ηi , for every i ∈ {1, . . . , n}

where η = N (0, σ2) and w∗ s.t. Card(Part(w∗)) ≤ Q

I Analyze convergence to w∗ by solving least-square problem
I Compute number of random observations n needed to find w∗

Results [R., Fogel, d’Aspremont and Bach, 2017]
Recovery (up to statistical precision) for n ≥ d random observations

Partitioning structure much harder than sparsity where recovery needs
n = O(s log d)

41



Convergence analysis
Problem
Constraint set is not convex, convergence is not ensured...

→ Use that it’s a union of subspaces defined by partitions

Recovery analysis
Analyze algorithm as a decoding procedure

I Assume
yi = xTi w∗ + ηi , for every i ∈ {1, . . . , n}
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Outline

II Machine Learning Problems
with Partitioning Structure
2.1 Grouping Features for Prediction
2.2 Iterative Hard Thresholding
2.3 Sparse and Linear Grouped Models
2.4 Synthetic experiments
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Sparse and Grouped Linear Models

Goal
Both selects s features and group them in Q groups by solving

minimize L(w) + λR(w)
subject to Card(Supp(w)) ≤ s, Card(Part(w)) ≤ Q + 1

Procedure
I Develop new dynamic programming to project on constraints
I Use resulting projected gradient descent

Recovery analysis
Constraint set is still a union of subspaces, same analysis applied
But here

n = O(s log d + Q log s + (s − Q) logQ)

observations are sufficient
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Synthetic Experiments

Setting
I yi = xTi w∗ + ηi with η ∼ N (0, σ2I)
I w∗ composed of Q = 5 group of identical features among d = 100

Goal
I Test robustness of our method with n and level of noise σ
I Measure ‖w∗ − ŵ‖2 with ŵ estimated vector
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Synthetic Experiments Results

Compare Iterative Hard Clustering (IHC) to
I Least square given original partition Part(w∗) (Oracle)
I Least-squares (LS)
I Least-squares followed by a k-means (LSK)
I OSCAR penalty (enforces cluster with regularization) (OS)

n = 50 n = 75 n = 100 n = 125 n = 150
Oracle 0.16±0.06 0.14±0.04 0.10±0.04 0.10±0.04 0.09±0.03

LS 61.94±17.63 51.94±16.01 21.41±9.40 1.02±0.18 0.70±0.09

LSK 62.93±18.05 57.78±17.03 10.18±14.96 0.31±0.19 0.19±0.12

OS 61.54±17.59 52.87±15.90 11.32±7.03 1.25±0.28 0.71±0.10

IHC 63.31±18.24 52.72±16.51 5.52±14.33 0.14±0.09 0.09±0.04

Measure of ‖w∗ − ŵ‖2 along number of samples n for fixed σ = 0.5, d = 100
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Synthetic Experiments Results

Compare Iterative Hard Clustering (IHC) to
I Least square given original partition Part(w∗) (Oracle)
I Least-squares (LS)
I Least-squares followed by a k-means (LSK)
I OSCAR penalty (enforces cluster with regularization) (OS)

σ = 0.05 σ = 0.1 σ = 0.5 σ = 1
Oracle 0.86 ±0.27 1.72±0.54 8.62±2.70 17.19±5.43

LS 7.04±0.92 14.05±1.82 70.39±9.20 140.41±18.20

LSK 1.44±0.46 2.88±0.91 19.10±12.13 48.09±27.46

OS 14.43±2.45 18.89±3.46 71.00±10.12 140.33±18.83

IHC 0.87±0.27 1.74±0.52 9.11±4.00 26.23±18.00

Measure of ‖w∗ − ŵ‖2 along level of noise σ for fixed n = 150, d = 100
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Conclusion and Future Work

Contributions
I Developed simple method to group (and select) features
I Analyzed recovery performance in comparison to sparsity
I Provides scalable and robust results

Not presented
I Convex approach for least square loss
I Systematic method to group features, samples or tasks

Perspectives
I Test on genomic data (not satisfying yet on text)
I Refine partitioning constraint to get better recovery results
I Develop regularization norm from partitioning constraints
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Thank you for your attention !
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