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SIERRA Team - École Normale Supérieure/CNRS/INRIA/PSL Research University, 75005, Paris, France

For minimization problems of a convex function f
minimize f (x), Solutions x∗ ∈ X∗ ⊂ Rd,

we present optimal and adaptive restart strategies of
classical algorithms, under a generic description of the

sharpness of f around its minimizers.

Overview

Sharpness of a function on a set K ⊃ X∗ can be de-
scribed by r ≥ 1 , µ > 0 s.t. for every x ∈ K,

µd(x,X∗)r ≤ f (x)− f ∗ (Sharp)

where d(x,X∗) is the distance from x to X∗.
Examples :
•Gradient dominated convex functions (r = 2)
•Matrix game problems like minxmaxy x

TAy (r = 1)
•Real analytic functions (r ≥ 1) ( Lojasiewicz inequality)
•A.k.a. Hölderian error bound

Sharpness

Smoothness of f generally described on a set J by
s ∈ [1, 2], L > 0 s.t. for every x, y ∈ J

‖∇f (x)−∇f (y)‖2 ≤ L‖x− y‖s−12 , (Smooth)

where ∇f (x) is any sub-gradient of f at x if s = 1.
Examples
•Classical assumption for non-smooth problems (s = 1)
•Smooth functions (s = 2)
•Hölder smooth functions (s ∈ (1, 2))

Smoothness

(Sharp) lower bounds, (Smooth) upper bounds s.t. s ≤ r.
Convergence depends then on

κ = L
2
s/µ

2
r, τ = 1− s/r ∈ [0, 1[

Links btw sharpness and smoothness

•Take the accelerated algorithm that starts from x0 and
outputs after t iterations x = A(x0, t), s.t.

f (x)− f ∗ ≤ 4Ld(x0, X
∗)2/t2,

•Schedule restarts at times tk and build sequence
xk = A(xk−1, tk).

Optimal strategy
Assume f satisfies (Sharp) on a set K ⊃ {x : f (x) ≤
f (x0)}, schedule restarts at times

tk = Cτ,κe
τk,

then after R restarts and N =
∑R

k=1 tk total iterations,

f (xR)− f ∗ = O
(
exp(−κ−1/2N)

)
, when τ = 0,

f (xR)− f ∗ = O
(
1/N2/τ

)
, when τ > 0.

Scheduled restarts for smooth problems

•For general problems (s ∈ [1, 2]), use fast universal al-
gorithm requires target ε to output x = U(x0, ε, t) s.t.

f (x)− f ∗ ≤ ε/2 + 4ε1−2/sL2/sd(x0, X
∗)2/t2ρ/s

where ρ = 3s/2−1 is the optimal rate assuming (Smooth)

•Scheduled restarts take then the form
xk = U(xk−1, εk, tk)

Optimal strategy
Assume f satisfies (Sharp) on a set K ⊃ {x : f (x) ≤
f (x0)}, given ε0 ≥ f (x0)− f ∗, schedule restarts by

tk = Cτ,κ,ρ,ε0e
τk, εk = e−ρkε0

Then after R restarts and N =
∑R

k=1 tk total iterations,
when τ = 0,

f (xR)− f ∗ = O
(
exp(−κ−s/(2ρ)N)

)
when τ = 0

f (xR)− f ∗ = O
(
1/Nρ/τ

)
when τ > 0

Universal scheduled restarts

Parameters µ, r often unknown, adaptivity is crucial
Log-scale grid search on possible schedules
•works for smooth pbs, fixed budget of iterations N
• suboptimal by a factor 4 at a cost of log2(N)2 search
Restart with termination criterion if f ∗ is known
• restart the algorithm each time the gap has decreased

by a constant factor
•gives optimal bounds for general convex problems

Adaptive strategies
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From top to bottom and left to right : least squares, logistic, dual SVM and LASSO
for classification on Sonar data set.
We use gradient descent (Grad), accelerated gradient (Acc), restart heuristic enforc-
ing monotonicity (Mono), best schedule found by grid-search (Adap) and schedule
with gap criterion (Crit). Large dots represent the restart iterations

Numerical Experiments

Analysis relies only on convergence rates, generalizes then
to composite problems and/or non-Euclidean settings.

Generalizations


