Overview

For minimization problems of a convex function f

minimize f(x), Solutions z* € X, Cc R%

we present optimal and adaptive restart strategies of
classical algorithms, under a generic description of the
sharpness of f around its minimizers.

Sharpness

Sharpness of a function on a set K D X* can be de-
scribed by r > 1, u > 0 s.t. for every x € K,

pd(z, X7)" < f(z) = f°

where d(x, X*) is the distance from x to X™.
Examples :

(Sharp)

e Gradient dominated convex functions (r = 2)

e Matrix game problems like min, max, z' Ay (r = 1)

e Real analytic functions (r > 1) (Lojasiewicz inequality)
e A k.a. Holderian error bound

Smoothness

Smoothness of [ generally described on a set J by
s€|[1,2], L >0s.t. for every z,y € J

[Vf(@) =Vl < Lilz -yl

where V f(x) is any sub-gradient of f at z if s = 1.
Examples

(Smooth)

e Classical assumption for non-smooth problems (s = 1)
e Smooth functions (s = 2)
e Holder smooth functions (s € (1, 2))

Links btw sharpness and smoothness

(Sharp) lower bounds, (Smooth) upper bounds s.t. s < r.
Convergence depends then on

T=1—s/re|0,1]

Sharpness, Restart, Acceleration

Scheduled restarts for smooth problems

e [ake the accelerated algorithm that starts from z, and
outputs after ¢ iterations = = A(x, t), s.t.

f(x) = f* < 4Ld(xo, X*)°/t,
e Schedule restarts at times ¢;, and build sequence
Ll — A(CCk_l, tk)

Optimal strategy

Assume f satisfies (Sharp) on a set K D {z : f(z) <
f(xg)}, schedule restarts at times

Tk
by = O’T,lie )

then after R restarts and NV = 25:1 t total iterations,

flzr) — f* =0 (exp(—k"'/’N)) |
flag) — f*=0 (1/N¥T),

when 7 =0,

when 7 > 0.

Universal scheduled restarts

e For general problems (s € [1,2]), use fast universal al-
gorithm requires target € to output x = U(xy, €, 1) s.t.

flx) — f* < e/2+4e' "2 L?5d(xy, X*)?/t2/°

where p = 3s/2—1 is the optimal rate assuming (Smooth)
e Scheduled restarts take then the form

T = U(xp_1, €, tr)

Optimal strategy
Assume [ satisfies (Sharp) on a set K D {z : f(x) <
f(xo)}, given €y > f(xg) — f*, schedule restarts by

Tk —pk
tk — CT)’iapane ) ek — € g

€0

Then after R restarts and N = 25:1 t total iterations,
when 7 = 0,

eXp(—/i_S/(Q’O)N))
1/}¢P/T)

when 7 =0
when 7 > ()
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Adaptive strategies

Parameters u, r often unknown, adaptivity is crucial
Log-scale grid search on possible schedules

e works for smooth pbs, fixed budget of iterations NV
e suboptimal by a factor 4 at a cost of log,(IN)* search
Restart with termination criterion if f* is known

e restart the algorithm each time the gap has decreased
by a constant factor

e gives optimal bounds for general convex problems

Numerical Experiments
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From top to bottom and left to right : least squares, logistic, dual SVM and LASSO
for classification on Sonar data set.

We use gradient descent (Grad), accelerated gradient (Acc), restart heuristic enforc-
ing monotonicity (Mono), best schedule found by grid-search (Adap) and schedule

with gap criterion (Crit). Large dots represent the restart iterations

Generalizations

Analysis relies only on convergence rates, generalizes then
to composite problems and/or non-Euclidean settings.




