Overview

Interpret convex optimization algorithms as integration
methods of the gradient flow equation

z(t) = =V f(z(t)), z(0)=x0
for f L-smooth, y-strongly convex.

Shows that acceleration methods can be seen
as integration methods with big step-sizes.

Continuous time solution
Gradient Flow is an Ordinary Differential Equation ODE

(t) = g(z(t)), =(0) = x0
where ¢ is
e Lipschitz = Existence and uniqueness of solution x(t)

e monotone=-Existence and uniqueness of equilibrium z*
s.t. g(x*) =0 and x(oc0) = 2*

Convergence of x(t) to * can be measured as

|2(t) — 2| < e lag — 27|

Integration methods

Approximate curve z(t) on |0, t,.<| by sequence z; s.t.
rp ~ x(kh) fork €{0,... thw/h}

where h is the step size of integration.

Euler’'s method

First-order approximation of x(¢ + h) around t,
x(t +h) = x(t) + hi(t) + O(h?)
From x, ~ x(kh), x1,1 =~ x(kh + h) is built as

Tpi1 = T + hg(xy).

For g(x) = —V f(x), one recognizes gradient descent.
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Linear Multistep Methods (LMM)

Linear (explicit) s-Multistep Methods generate next point
from s previous ones as

s—1 s—1
This = — Z piTiri + h Z 0ig(xp4i), for k>0
1=0 1=0

where p;,0;, € R and x,...,x,_; are initialized before-

hand.
Using £ : x1. — x11, g1 = g(xy), an LMM reads

p(E)xr = ho(E)gy, fork >0

where p, o are polynomials (with p, = 1).
An integration method must satisfy
e Zero Stability: Not sensitive to initializations

e Consistency: Local error decreases with step size s.t.

lim ||z — 2(t)]| =0 for any k € {0, ... tyw/h)
h—0

Stability

Optimization focuses on infinite time horizon.
For integration methods, this requires Stability, i.e.

If x(t) bounded, then x; must be bounded.
— depends on ¢ and step-size h.

Complex in the general case, but reduces to simple con-
siderations for linear ODE

T(t) = —Ax(t)
There the LMM builds a sequence satisfying
p(E)xp + hAo(E)x, =0, fork >0
Stability of an LMM is then ensured if
roots(p + hAo)| < 1

Convergence to equilibrium is then measured by

o — 2" < O max(froots(p + hAo))")

Integration Methods and Optimization Algorithms

Analysis of LMM for linear ODE
For linear ODE (quadratic optimization),

(1) = — Az(t)

with Sp(A) = |u, L], long-term behavior of LMM of order
s with step-size h controlled by

ts(p + hA
[max |roots(p + hAo)|

where |roots(p)| < 1
p(1) =1, p'(1) =o(1)
Optimal methods in p, o, h are

(Zero Stability)
(Consistency)

ewhen s = 1: Gradient Descend (with optimal step size)
e when s = 2: Polyak's Heavy Ball method
ewhen s = 2 for given h: Nesterov's Fast Gradient

Acceleration interpretation

For step-size h and integration method s.t. x; ~ x(kh),
|z — 27| & ||z(kh) — 27| < e "|zy — 27

The bigger the step-size, the faster the
convergence

As an integration method, Nesterov's fast gradient
method has step-size
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= Nesterov's gradient is a stable integration method
with bigger step size

Generalizations

Composite, non-Euclidean settings can be cast by corre-
sponding gradient flows and adequate LMM

In the convex case, Nesterov's method shows also bigger
step size of integration




