

Overview

Interpret convex optimization algorithms as integration methods of the gradient flow equation

 $\dot{x}(t) = -\nabla f(x(t)), \quad x(0) = x_0$

for f L-smooth, μ -strongly convex.

Shows that acceleration methods can be seen as integration methods with big step-sizes.

Continuous time solution

Gradient Flow is an Ordinary Differential Equation ODE

 $\dot{x}(t) = g(x(t)), \quad x(0) = x_0$

where g is

• Lipschitz \Rightarrow Existence and uniqueness of solution x(t)• monotone \Rightarrow Existence and uniqueness of equilibrium x^* s.t. $g(x^*) = 0$ and $x(\infty) = x^*$

Convergence of x(t) to x^* can be measured as $||x(t) - x^*|| \le e^{-\mu t} ||x_0 - x^*||$

Integration methods —

Approximate curve x(t) on $[0, t_{max}]$ by sequence x_k s.t. $x_k \approx x(kh)$ for $k \in \{0, \ldots, t_{\max}/h\}$

where h is the step size of integration.

Euler's method

First-order approximation of x(t+h) around t, $x(t+h) = x(t) + h\dot{x}(t) + O(h^2)$ From $x_k \approx x(kh)$, $x_{k+1} \approx x(kh+h)$ is built as $x_{k+1} = x_k + hg(x_k).$ For $g(x) = -\nabla f(x)$, one recognizes gradient descent.

Integration Methods and Optimization Algorithms

Linear Multistep Methods (LMM) —

Linear (explicit) *s*-Multistep Methods generate next point from s previous ones as

$$x_{k+s} = -\sum_{i=0}^{s-1} \rho_i x_{k+i} + h \sum_{i=0}^{s-1} \sigma_i g$$

where $\rho_i, \sigma_i \in \mathbb{R}$ and x_0, \ldots, x_{s-1} are initialized beforehand.

Using $E: x_k \to x_{k+1}$, $g_k = g(x_k)$, an LMM reads $\rho(E)x_k = h\sigma(E)g_k, \text{ for } k \ge 0$

where ρ, σ are polynomials (with $\rho_s = 1$). An integration method *must satisfy* • **Zero Stability:** Not sensitive to initializations • **Consistency:** Local error decreases with step size s.t.

 $\lim_{k \to 0} ||x_k - x(t_k)|| = 0 \quad \text{for any } k \in \{0, \dots, t_{\max}/h\}$

Stability -

Optimization focuses on *infinite time* horizon. For integration methods, this requires **Stability**, i.e. If x(t) bounded, then x_k must be bounded. \rightarrow depends on g and step-size h.

Complex in the general case, but reduces to simple considerations for linear ODE

 $\dot{x}(t) = -\lambda x(t)$

There the LMM builds a sequence satisfying

$$\rho(E)x_k + h\lambda\sigma(E)x_k = 0,$$

Stability of an LMM is then ensured if

 $|\operatorname{roots}(\rho + h\lambda\sigma)| < 1$

Convergence to equilibrium is then measured by

 $\|x_k - x^*\| \le O\left(\max(|\mathsf{roots}(\rho + h\lambda\sigma)|)^k\right)$

Damien Scieur, Vincent Roulet, Francis Bach, Alexandre d'Aspremont SIERRA Team - École Normale Supérieure/CNRS/INRIA/PSL Research University, 75005, Paris, France

 $(x_{k+i}), \quad \text{for } k \ge 0$

for k > 0

Analysis of LMM for linear ODE —

For linear ODE (quadratic optimization),

s with step-size h controlled by

max **roots** $\lambda \in [\mu, L]$ where $|\operatorname{roots}(\rho)| \leq 1$ $\rho(1) = 1, \ \rho'(1) = \sigma(1)$

Optimal methods in ρ, σ, h are • when s = 2: Polyak's Heavy Ball method

Acceleration interpretation —

For step-size h and integration method s.t. $x_k \approx x(kh)$, $||x_k - x^*|| \approx ||x(kh) - x^*|| \le e^{-\mu kh} ||x_0 - x^*||$

The bigger the step-size, the faster the convergence

As an integration method, Nesterov's fast gradient method has step-size

 $h_{\mathsf{Nest}} pprox -$

with bigger step size

Generalizations

Composite, non-Euclidean settings can be cast by corresponding gradient flows and adequate LMM

In the convex case, Nesterov's method shows also bigger step size of integration

 $\dot{x}(t) = -Ax(t)$

with $Sp(A) = [\mu, L]$, long-term behavior of LMM of order

$$\left| \left(\rho + h\lambda\sigma \right) \right|$$

(Zero Stability) (Consistency)

• when s = 1: Gradient Descend (with optimal step size) • when s = 2 for given h: Nesterov's Fast Gradient

$$\frac{1}{L}\sqrt{\frac{L}{\mu}} = \sqrt{\frac{L}{\mu}}h_{\rm grad}$$

 \Rightarrow Nesterov's gradient is a stable integration method