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Interpret convex optimization algorithms as integration
methods of the gradient flow equation

ẋ(t) = −∇f (x(t)), x(0) = x0

for f L-smooth, µ-strongly convex.
Shows that acceleration methods can be seen

as integration methods with big step-sizes.

Overview

Gradient Flow is an Ordinary Differential Equation ODE
ẋ(t) = g(x(t)), x(0) = x0

where g is
•Lipschitz ⇒ Existence and uniqueness of solution x(t)
•monotone⇒Existence and uniqueness of equilibrium x∗

s.t. g(x∗) = 0 and x(∞) = x∗

Convergence of x(t) to x∗ can be measured as
‖x(t)− x∗‖ ≤ e−µt‖x0 − x∗‖

Continuous time solution

Approximate curve x(t) on [0, tmax] by sequence xk s.t.
xk ≈ x(kh) for k ∈ {0, . . . , tmax/h}

where h is the step size of integration.

Integration methods

First-order approximation of x(t + h) around t,
x(t + h) = x(t) + hẋ(t) +O(h2)

From xk ≈ x(kh), xk+1 ≈ x(kh + h) is built as
xk+1 = xk + hg(xk).

For g(x) = −∇f (x), one recognizes gradient descent.

Euler’s method

Linear (explicit) s-Multistep Methods generate next point
from s previous ones as

xk+s = −
s−1∑
i=0

ρixk+i + h

s−1∑
i=0

σig(xk+i), for k ≥ 0

where ρi, σi ∈ R and x0, . . . , xs−1 are initialized before-
hand.
Using E : xk → xk+1, gk = g(xk), an LMM reads

ρ(E)xk = hσ(E)gk, for k ≥ 0

where ρ, σ are polynomials (with ρs = 1).
An integration method must satisfy
•Zero Stability: Not sensitive to initializations
•Consistency: Local error decreases with step size s.t.

lim
h→0
‖xk − x(tk)‖ = 0 for any k ∈ {0, . . . , tmax/h}

Linear Multistep Methods (LMM)

Optimization focuses on infinite time horizon.
For integration methods, this requires Stability, i.e.

If x(t) bounded, then xk must be bounded.
→ depends on g and step-size h.

Complex in the general case, but reduces to simple con-
siderations for linear ODE

ẋ(t) = −λx(t)

There the LMM builds a sequence satisfying
ρ(E)xk + hλσ(E)xk = 0, for k ≥ 0

Stability of an LMM is then ensured if
|roots(ρ + hλσ)| < 1

Convergence to equilibrium is then measured by

‖xk − x∗‖ ≤ O
(
max(|roots(ρ + hλσ)|)k

)

Stability

For linear ODE (quadratic optimization),
ẋ(t) = −Ax(t)

with Sp(A) = [µ, L], long-term behavior of LMM of order
s with step-size h controlled by

max
λ∈[µ,L]

|roots(ρ + hλσ)|

where |roots(ρ)| ≤ 1 (Zero Stability)
ρ(1) = 1, ρ′(1) = σ(1) (Consistency)

Optimal methods in ρ, σ, h are
•when s = 1: Gradient Descend (with optimal step size)
•when s = 2: Polyak’s Heavy Ball method
•when s = 2 for given h: Nesterov’s Fast Gradient

Analysis of LMM for linear ODE

For step-size h and integration method s.t. xk ≈ x(kh),
‖xk − x∗‖ ≈ ‖x(kh)− x∗‖ ≤ e−µkh‖x0 − x∗‖

The bigger the step-size, the faster the
convergence

As an integration method, Nesterov’s fast gradient
method has step-size

hNest ≈
1

L

√
L

µ
=

√
L

µ
hgrad

⇒ Nesterov’s gradient is a stable integration method
with bigger step size

Acceleration interpretation

Composite, non-Euclidean settings can be cast by corre-
sponding gradient flows and adequate LMM
In the convex case, Nesterov’s method shows also bigger
step size of integration

Generalizations


