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min
u

Ew [h(x(u + w))] + g(u)

where xt+1(u + w) = φt(xt(u + w), ut + wt)

and u = (u0, . . . , uτ−1) are controls, w = (w0, . . .wτ−1) are noises.
I State cost h(x) =

∑τ
t=0 ht(xt),

I Control cost g(u) =
∑τ−1

t=0 gt(ut),



Risk-Sensitive Objective

Risk Sensitive Objective (Whittle 1981)

min
u0,...,uτ−1

fθ(u) =

{
1
θ
logEw [exp θh(x(u + w))] + g(u)

}
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Iterative Linear Exponential Quadratic Gaussian algorithm

Linear Exponential Quadratic Gaussian (LEQG) (Whittle 1981)

For linear dynamics, quadratic costs, small enough θ,
→ the risk-sensitive problem can be solved by dynamic programming

Iterative Linear Exponential Quadratic Gaussian (ILEQG) (Farshidian & Buchli 2015)

For non-linear dynamics, convex costs, small enough θ
→ approximates the non-linear problem by LEQG iteratively

Questions:
I Does this algorithm converge? Under which assumptions?
I How is the line-search implemented? Is there a principled way?
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ILEQG from Optimization Viewpoint

Theoretical Answers (Roulet et al. 2019)

For h, g quadratics, φt bounded, Lipschitz, smooth

1. Identify surrogate risk-sensitive cost

f̂θ(u) =
1
θ
logEw exp[θh(x(u) +∇x(u)>w)]︸ ︷︷ ︸

η̂θ(u)

+g(u),

2. Define regularized ILEQG, named RegILEQG, that minimizes f̂θ(u)

3. η̂θ(u) can be computed analytically → access to line-search

4. Prove convergence to a near-stationary point of f̂θ for small γk



Numerical Illustrations
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Approximations by surrogate risk-sensitive cost vs Monte-Carlo



Numerical Illustrations
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Robustness of controllers against disturbance noise.

Code available at https://github.com/vroulet/ilqc
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