On the Convergence of the Iterative Linear Exponential Quadratic Gaussian Algorithm to Stationary Points

Vincent Roulet, Maryam Fazel, Siddhartha Srinivasa, Zaid Harchaoui

Control Problem

Control Problem

Control Problem

Objective

$$\min_{u} \quad \mathbb{E}_{w}[h(x(u+w))] + g(u)$$

where $x_{t+1}(u+w) = \phi_t(x_t(u+w), u_t + w_t)$

and $u = (u_0, \ldots, u_{\tau-1})$ are controls, $w = (w_0, \ldots, w_{\tau-1})$ are noises.

- State cost $h(x) = \sum_{t=0}^{\tau} h_t(x_t)$,
- Control cost $g(\mathbf{u}) = \sum_{t=0}^{\tau-1} g_t(\mathbf{u}_t)$,

Risk-Sensitive Objective

Risk Sensitive Objective (Whittle 1981)

$$\min_{u_0,\ldots,u_{\tau-1}} f_{\theta}(u) = \left\{ \frac{1}{\theta} \log \mathbb{E}_w[\exp \theta h(x(u+w))] + g(u) \right\}$$

Risk-Sensitive Objective

Risk Sensitive Objective (Whittle 1981)

$$\min_{u_0,\dots,u_{\tau-1}} f_{\theta}(u) = \left\{ \frac{1}{\theta} \log \mathbb{E}_w[\exp \theta h(x(u+w))] + g(u) \right\}$$

Effect of θ for $f_{\theta}(x) = \frac{1}{\theta} \log \mathbb{E}_{w \sim \mathcal{N}(\mathbf{0}, \mathbf{1})} \left[\exp \theta F(x+w) \right]$

Expected behavior of the risk-sensitive controllers.

Iterative Linear Exponential Quadratic Gaussian algorithm

Linear Exponential Quadratic Gaussian (LEQG) (Whittle 1981)

For *linear* dynamics, *quadratic* costs, *small* enough θ , \rightarrow the risk-sensitive problem can be solved by dynamic programming

Iterative Linear Exponential Quadratic Gaussian algorithm

Linear Exponential Quadratic Gaussian (LEQG) (Whittle 1981) For *linear* dynamics, *quadratic* costs, *small enough* θ , \rightarrow the risk-sensitive problem can be solved by dynamic programming

Iterative Linear Exponential Quadratic Gaussian (ILEQG) (Farshidian & Buchli 2015) For non-linear dynamics, convex costs, small enough θ \rightarrow approximates the non-linear problem by LEQG iteratively

Iterative Linear Exponential Quadratic Gaussian algorithm

Linear Exponential Quadratic Gaussian (LEQG) (Whittle 1981) For *linear* dynamics, *quadratic* costs, *small enough* θ , \rightarrow the risk-sensitive problem can be solved by dynamic programming

Iterative Linear Exponential Quadratic Gaussian (ILEQG) (Farshidian & Buchli 2015) For non-linear dynamics, convex costs, small enough θ \rightarrow approximates the non-linear problem by LEQG iteratively

Questions:

- Does this algorithm converge? Under which assumptions?
- How is the line-search implemented? Is there a principled way?

ILEQG from Optimization Viewpoint

Theoretical Answers (Roulet et al. 2019)

For h, g quadratics, ϕ_t bounded, Lipschitz, smooth

1. Identify surrogate risk-sensitive cost

$$\hat{f}_{\theta}(\boldsymbol{u}) = \underbrace{\frac{1}{\theta} \log \mathbb{E}_{w} \exp[\theta h(\boldsymbol{x}(\boldsymbol{u}) + \nabla \boldsymbol{x}(\boldsymbol{u})^{\top} \boldsymbol{w})]}_{\hat{\eta}_{\theta}(\boldsymbol{u})} + g(\boldsymbol{u}),$$

- 2. Define regularized ILEQG, named RegILEQG, that minimizes $\hat{f}_{\theta}(\boldsymbol{u})$
- 3. $\hat{\eta}_{\theta}(u)$ can be computed analytically \rightarrow access to line-search
- 4. Prove convergence to a near-stationary point of $\hat{f}_{ heta}$ for small γ_k

Numerical Illustrations

Numerical Illustrations

Robustness of controllers against disturbance noise.

Code available at https://github.com/vroulet/ilqc

- Farshidian, F. & Buchli, J. (2015), 'Risk sensitive, nonlinear optimal control: Iterative linear exponential-quadratic optimal control with Gaussian noise', *arXiv preprint arXiv:1512.07173*.
- Roulet, V., Fazel, M., Srinivasa, S. & Harchaoui, Z. (2019), 'On the convergence to stationary points of the iterative linear exponential quadratic gaussian algorithm', *arXiv preprint*.
- Whittle, P. (1981), 'Risk-sensitive linear quadratic Gaussian control', *Advances in Applied Probability* **13**(4), 764–777.