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State at time t Zri1 = G (2 ,urtwy) State at time t+1
Objective
min  Ew [(x(u + w))] + g(v)
where  x¢r1(u+ w) = ¢e(xe(u+ w), ur + we)
and u = (ug,...,ur—1) are controls, w = (wp, ... w,_1) are noises.
> State cost h(x) = >_7_g he(x:),

» Control cost g(u) = Z::_Ol ge(ut),



Risk-Sensitive Objective

Risk Sensitive Objective (whittle 1081)

min  fy(u) = {% log E., [exp 0h(x(1 + w))] —|—g(u)}
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Risk Sensitive Objective (whittle 1081)
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Iterative Linear Exponential Quadratic Gaussian algorithm

Linear Exponential Quadratic Gaussian (LEQG) (whittle 1081)
For linear dynamics, quadratic costs, small enough 0,
— the risk-sensitive problem can be solved by dynamic programming
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Iterative Linear Exponential Quadratic Gaussian algorithm

Linear Exponential Quadratic Gaussian (LEQG) (whittle 1081)
For linear dynamics, quadratic costs, small enough 0,
— the risk-sensitive problem can be solved by dynamic programming

Iterative Linear Exponential Quadratic Gaussian (ILEQG) (Farshidian & Buchli 2015)
For non-linear dynamics, convex costs, small enough 6
— approximates the non-linear problem by LEQG iteratively

Questions:
» Does this algorithm converge? Under which assumptions?

> How is the line-search implemented? Is there a principled way?



ILEQG from Optimization Viewpoint

Theoretical Answers (Roulet et al. 2019)
For h, g quadratics, ¢: bounded, Lipschitz, smooth

1. ldentify surrogate risk-sensitive cost

fo(0) = 7 log B,y exploh(x(u) + Vx(u) T w)] +8(u),

Mg (1)
2. Define regularized ILEQG, named ReglLEQG, that minimizes fg(u)
3. fg(u) can be computed analytically — access to line-search

4. Prove convergence to a near-stationary point of f for small 4



Numerical Illustrations
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Numerical Illustrations
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Code available at https://github.com/vroulet/ilqc
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